Advertisement

Characterization of dry tube location in KAMINI reactor towards the development of k0-based IM-NAA

  • Manish Chand
  • J. S. Brahmaji Rao
  • G. V. S. Ashok Kumar
  • R. KumarEmail author
Article
  • 6 Downloads

Abstract

Characterization studies were carried out for the freshly installed dry tubes (DT-1 and DT-2) in KAMINI reactor. The maximum gold equivalent neutron flux at 20 kW for DT-1 and DT-2 were found to be (1.02 ± 0.02)E+10 cm−2 s−1 at 368 and (4.90 ± 0.30)E+7 cm−2 s−1 at 300 mm respectively. The sub-cadmium to epithermal neutron flux ratio (f) and epithermal neutron flux shape factor (α) were found to be 144 ± 7 and − 0.289 ± 0.010 respectively at this position for DT-1 alone. These parameters were validated by analyzing the IAEA standard (SL-1) and applied to analyze jarosite samples using k0-based internal monostandard neutron activation analysis.

Keywords

KAMINI reactor Sub-cadmium to epithermal neutron flux ratio Epithermal neutron flux shape factor IM-NAA In-situ relative detection efficiency 

Notes

Acknowledgements

We sincerely thank the reactor operational engineers of KAMINI reactor for their valuable support towards the irradiation experiments. We also thank health physicists and reactor physicists of IGCAR for their help for the radiation dose measurements of irradiated samples.

References

  1. 1.
    Bode P, Overwater RMW, De Goeij JJM (1997) Large-sample neutron activation analysis: present status and prospects. J Radioanal Nucl Chem 216:5–11CrossRefGoogle Scholar
  2. 2.
    Overwater RMW, Bode P, de Goeij JJM, Hoogenboom JE (1996) Feasibility of elemental analysis of kilogram-size samples by instrumental neutron activation analysis. Anal Chem 68:341–348CrossRefGoogle Scholar
  3. 3.
    Sueki K, Kobayashi K, Sato W, Nakahara H, Tomizawa T (1996) Nondestructive determination of major elements in a large sample by prompt γ ray neutron activation analysis. Anal Chem 68:2203–2209CrossRefGoogle Scholar
  4. 4.
    Dasari KB, Acharya R, Swain KK, Lakshmana Das N, Reddy AVR (2010) Analysis of large and non-standard geometry samples of ancient potteries by internal monostandard neutron activation analysis using in situ detection efficiency. J Radioanal Nucl Chem 286:525–531CrossRefGoogle Scholar
  5. 5.
    Acharya R, Nair AGC, Sudarshan K, Reddy AVR, Goswami A (2007) Development and applications of the k0-based internal mono standard INAA method. Appl Radiat Isot 65:164–169CrossRefGoogle Scholar
  6. 6.
    Nair AGC, Acharya R, Sudarshan K, Gangotra S, Reddy AVR, Manohar SB et al (2003) Development of an internal monostandard instrumental neutron activation analysis method based on in situ detection efficiency for analysis of large and nonstandard geometry samples. Anal Chem 75:4868–4874CrossRefGoogle Scholar
  7. 7.
    Acharya R, Nair AGC, Reddy AVR, Goswami A (2004) Application of k0-based internal mono standard instrumental neutron activation analysis method method for composition analysis of stainless steel clad sample. Anal Chim Acta 522:127–132CrossRefGoogle Scholar
  8. 8.
    Greenberg RR, Bode P, Fernandes EADN (2011) Neutron activation analysis: a primary method of measurement. Spectrochim Acta Part B 66:193–241CrossRefGoogle Scholar
  9. 9.
    De Corte F (2001) The standardization of standardless NAA. J Radioanal Nucl Chem 248:13–20CrossRefGoogle Scholar
  10. 10.
    De Corte F, Simonits A, De Wispelare A, Hoste J (1987) Accuracy and applicability of the k0-standardization method. J Radioanal Nucl Chem 113:145–161CrossRefGoogle Scholar
  11. 11.
    Acharya R, Chatt A (2003) Characterization of the Dalhousie University SLOWPOKE-2 reactor for k0-NAA and application to medium-lived nuclides. J Radioanal Nucl Chem 257:525–529CrossRefGoogle Scholar
  12. 12.
    De Corte F, Simonits A (2003) Recommended nuclear data for use in the k0 standardization of neutron activation analysis. At Data Nucl Data Tables 85:47–67CrossRefGoogle Scholar
  13. 13.
    Overwater RMW, Bode P, de Goeij JJM (1993) Gamma-ray spectroscopy of voluminous sources corrections for source geometry and self-attenuation. Nucl Instrum Methods Phys Res A 324:209–218CrossRefGoogle Scholar
  14. 14.
    Acharya R, Nair AGC, Reddy AVR, Goswami A (2004) Standard-less analysis of Zircaloy clad samples by an instrumental neutron activation method. J Nucl Mater 326:80–85CrossRefGoogle Scholar
  15. 15.
    Sudarshan K, Nair AGC, Goswami A (2003) A proposed k0 based methodology for neutron activation analysis of samples of non-standard geometry. J Radioanal Nucl Chem 256:93–98CrossRefGoogle Scholar
  16. 16.
    Kane WR, Mariscotti MA (1967) An empirical method for determining the relative efficiency of a Ge (Li) gamma-ray detector. Nucl Instrum Methods 56:189CrossRefGoogle Scholar
  17. 17.
    Brahmaji Rao JS, Senthilvadivu E, Seshadreesan NP, Acharya R, Venkatasubramani CR, Reddy AVR (2012) Characterization of pneumatic fast transfer system irradiation position of KAMINI reactor for k0-based NAA. J Radioanal Nucl Chem 294:137–141CrossRefGoogle Scholar
  18. 18.
    Manh Dung Ho, Yeon Cho Seung (2003) A simple method for α determination. J Radioanal Nucl Chem 257:573–575CrossRefGoogle Scholar
  19. 19.
    Manh Dung Ho, Fumio Sasajima (2003) Determination of α and f for k0-NAA in irradiation sites with high thermalized neutrons. J Radioanal Nucl Chem 257:509–512CrossRefGoogle Scholar
  20. 20.
    De Corte F, Moens L, Sordo-el Hammami K, Simonits A, Hoste J (1979) Modification and generalization of some methods to improve the accuracy of α-determination in the 1/E1+α epithermal neutron spectrum. J Radioanal Chem 52:305–317CrossRefGoogle Scholar
  21. 21.
    De Corte F, Sordo-el Hammami K, Moens L, Simonits A, de Wispelare A, Hoste J (1981) The accuracy and precision of the experimental α-determination in the 1/E1+α epithermal reactor-neutron spectrum. J Radioanal Chem 62:209–255CrossRefGoogle Scholar
  22. 22.
    De Corte F, Moens L, Simonits A, Sordo-El Hammami K, de Wispelaere A, Hoste J (1982) The effect of the epithermal neutron flux distribution on the accuracy of absolute and comparator standardization methods in (n, γ) activation analysis. J Radioanal Nucl Chem 72:275–286CrossRefGoogle Scholar
  23. 23.
    Ashok Kumar GVS, Sen Sujoy, Radha E, Brahmaji Rao JS, Acharya R, Kumar R et al (2017) Studies on neutron spectrum characterization for the pneumatic fast transfer system (PFTS) of KAMINI reactor. Appl Radiat Isot 124:49–55CrossRefGoogle Scholar
  24. 24.
    Mohapatra DK, Mohanakrishnan P (2002) Measurement and prediction of neutron spectra in the Kalpakkam mini reactor (KAMINI). Appl Radiat Isot 57:25–33CrossRefGoogle Scholar
  25. 25.
    Mohapatra DK, Radha E, Mohanakrishnan P (2004) Theoretical and experimental investigations of reactor parameters in a U-233 fuelled research reactor. Ann Nucl Energy 31:197–212CrossRefGoogle Scholar
  26. 26.
    Swain KK, Acharya R, Reddy AVR (2014) Analysis of SMELS by k0-based IM-NAA method using PFTS position of KAMINI reactor for quality control exercise. J Radioanal Nucl Chem 300:33–37CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Pappu A, Saxena M, Asolekar SR (2006) Jarosite characteristics and its utilisation potentials. Sci Total Environ 359:232–243CrossRefGoogle Scholar
  29. 29.
    Kerolli-Mustafa M, Ćurković L (2016) Analysing the characteristics and application potentials of jarosite waste in Kosovo. Glob NEST J 18:89–97CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Manish Chand
    • 1
    • 2
  • J. S. Brahmaji Rao
    • 2
  • G. V. S. Ashok Kumar
    • 2
  • R. Kumar
    • 1
    • 2
    Email author
  1. 1.Homi Bhabha National Institute (HBNI)Indira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Fuel Chemistry DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations