Effective biosorption of U(VI) from aqueous solution using calcium alginate hydrogel beads grafted with amino-carbamate moieties

  • Hamza Shehzad
  • Limin ZhouEmail author
  • Yun Wang
  • Jinbo Ouyang
  • Guolin Huang
  • Zhirong Liu
  • Zhao Li


Novel amino-carbamate moiety grafted calcium alginate hydrogel beads (CA-1) were synthesized by reacting sodium alginate with 4-phenylsemicarbazide followed by ionotropic crosslinking with Ca(II) ions. As compared to pure calcium alginate hydrogel beads (CA), CA-1 exhibited fast kinetics and enhanced sorption capacity towards U(VI) ions, from mild acidic conditions. The sorption kinetic could be described by pseudo-second order equation, with the chemisorption as the rate-controlling step. The sorption isotherm were fitted well by Langmuir (qm = 233.2 mg/g at 298 K). CA-1 hydrogel beads exhibited fast kinetic, high sorption capacity and excellent selectivity for U(VI) sorption, thus it could be potentially used for the removal/recovery of U(VI) ions from wastewater.


Calcium alginate Amino-carbamate Uranium Biosorption 



The work is financially supported by the National Natural Science Foundation (21667001; 21866002; 21866005; 21706028; 21866006), the Key Research and Development Program and the Natural Science Fund Program of Jiangxi Province (20161BBF60059; S2017ZRMSB0473).


  1. 1.
    Havelka S, Berak L, Kourim V, Peka I, Podest M (1973) Research on fuel cycles of nuclear power stations carried out in the chemistry department of the institute of nuclear research. Stat Neerl 11:63–76Google Scholar
  2. 2.
    Aly MM, Hamza MF (2013) A review: studies on uranium removal using different techniques. Overview. J Disper Sci Technol 34:182–213CrossRefGoogle Scholar
  3. 3.
    Elwakeel KZ, Atia AA (2014) Uptake of U(VI) from aqueous media by magnetic Schiff’s base chitosan composite. J Clean Prod 70:292–302CrossRefGoogle Scholar
  4. 4.
    Galhoum AA, Mahfouz MG, Atia AA (2015) Amino acid functionalized chitosan magnetic nanobased particles for uranyl sorption. Ind Eng Chem Res 54:12374–12385CrossRefGoogle Scholar
  5. 5.
    Kim JS, Lee JY, Yoon HS, Kumar JR (2011) A brief review on solvent extraction of uranium from acidic solutions. Sep Purif Method 40:77–125CrossRefGoogle Scholar
  6. 6.
    Gok C, Aytas S (2009) Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J Hazard Mater 168:369–375CrossRefGoogle Scholar
  7. 7.
    Read AGH, Miura N, Carter JL et al (2018) Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Int J Biol Macromol 117:78–85CrossRefGoogle Scholar
  8. 8.
    Chen JP, Kuo CY, Lee WL (2012) Thermo-responsive wound dressings by grafting chitosan and poly(n-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Appl Surf Sci 262:95–101CrossRefGoogle Scholar
  9. 9.
    Iftekhar S, Srivastava V, Hammouda SB, Sillanpää M (2018) Fabrication of novel metal ion imprinted xanthan gum-layered double hydroxide nanocomposite for adsorption of rare earth elements. Carbohydr Polym 194:274–284CrossRefGoogle Scholar
  10. 10.
    Cui J, Zhou Z, Liu S et al (2018) Synthesis of cauliflower-like ion imprinted polymers for selective adsorption and separation of lithium ion. New J Chem 42:14502–14509CrossRefGoogle Scholar
  11. 11.
    Sone H, Fugetsu B, Tanaka S (2009) Selective elimination of lead(II) ions by alginate/polyurethane composite foams. J Hazard Mater 162:423–429CrossRefGoogle Scholar
  12. 12.
    Wu J, Tian K, Wang J et al (2018) Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles. Chem Eng J 106:124–137Google Scholar
  13. 13.
    Shehzad H, Zhou L, Li Z, Chen Q, Wang Y, Liu Z (2018) Effective adsorption of U(VI) from aqueous solution using magnetic chitosan nanoparticles grafted with maleic anhydride: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 315:195–206CrossRefGoogle Scholar
  14. 14.
    Yu S, Dai Y, Cao X (2016) Adsorption of uranium(VI) from aqueous solution using a novel magnetic hydrothermal cross-linking chitosan. J Radioanal Nucl Chem 310:651–660CrossRefGoogle Scholar
  15. 15.
    Sheng L, Zhou L, Huang Z (2016) Facile synthesis of magnetic chitosan nano-particles functionalized with N/O-containing groups for efficient adsorption of U(VI) from aqueous solution. J Radioanal Nucl Chem 310:1361–1371CrossRefGoogle Scholar
  16. 16.
    Wang G, Liu J, Wang X (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058CrossRefGoogle Scholar
  17. 17.
    Yu J, Wang J, Jiang Y (2017) Removal of uranium from aqueous solution by alginate beads. Nucl Eng Technol 49:534–540CrossRefGoogle Scholar
  18. 18.
    Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem 1:7433–7439CrossRefGoogle Scholar
  19. 19.
    Ahmad A, Bhat AH, Buang A (2018) Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: kinetic and equilibrium modeling. J Clean Prod 171:1361–1375CrossRefGoogle Scholar
  20. 20.
    Papageorgiou SK, Katsaros FK, Kouvelos EP, Nolan JW, Deit HL, Kanellopoulos NK (2006) Heavy metal sorption by calcium alginate beads from laminaria digitata. J Hazard Mater 137:1765–1772CrossRefGoogle Scholar
  21. 21.
    Shengye W, Thierry V, Catherine F, Eric G (2016) Alginate and algal-based beads for the sorption of metal cations: Cu(II) and Pb(II). Int J Mol Sci 17:1453–1460CrossRefGoogle Scholar
  22. 22.
    Vijayalakshmi K, Gomathi T (2014) Preparation and characterization of nanochitosan/sodium alginate/microcrystalline cellulose beads. Pharm Chem 6:65–77Google Scholar
  23. 23.
    Gotoh T, Matsushima K, Kikuchi KI (2004) Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere 55:135–140CrossRefGoogle Scholar
  24. 24.
    Benettayeb A, Guibal E, Morsli A, Kessas R (2017) Chemical modification of alginate for enhanced sorption of Cd(II), Cu(II) and Pb(II). Chem Eng J 316:704–714CrossRefGoogle Scholar
  25. 25.
    Leal D, Matsuhiro B, Rossi M, Caruso F (2008) FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr Res 343:308–316CrossRefGoogle Scholar
  26. 26.
    Şimşek S, Yilmaz E, Boztu A (2013) Amine-modified maleic anhydride containing terpolymers for the adsorption of uranyl ion in aqueous solutions. J Radioanal Nucl Chem 298:923–930CrossRefGoogle Scholar
  27. 27.
    Ouyang J, Wang Y, Li T, Zhou L, Liu Z (2018) Immobilization of carboxyl-modified multiwalled carbon nanotubes in chitosan-based composite membranes for U(VI) sorption. J Radioanal Nucl Chem 317:1419–1428CrossRefGoogle Scholar
  28. 28.
    Zhou L, Zou H, Wang Y, Liu Z, Adesina AA (2016) Immobilization of in situ generated Fe0-nanoparticles in tripolyphosphate-crosslinking chitosan membranes for enhancing U(VI) sorption. J Radioanal Nucl Chem 311:1–9Google Scholar
  29. 29.
    Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Handlingar 24:1–39Google Scholar
  30. 30.
    Ho YS, McKay G (2002) Application of kinetic models to the sorption of copper(II) on to peat. Adsorpt Sci Technol 20:797–815CrossRefGoogle Scholar
  31. 31.
    Donia AM, Atia AA, Elwakeel KZ (2007) Recovery of gold (III) and silver (I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy 87:197–206CrossRefGoogle Scholar
  32. 32.
    Yang S, Qian J, Kuang L, Hua D (2017) Ion-imprinted mesoporous silica for selective removal of uranium from highly acidic and radioactive effluent. ACS Appl Mater Int 9:29337–29344CrossRefGoogle Scholar
  33. 33.
    Basu H, Singhal RK, Pimple MV, Saha S (2018) Graphene oxide encapsulated in alginate beads for enhanced sorption of uranium from different aquatic environments. J Environ Chem Eng 6:1625–1633CrossRefGoogle Scholar
  34. 34.
    Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113:860–864CrossRefGoogle Scholar
  35. 35.
    Kim JH, Lee HI, Yeon JW, Jung Y, Kim JM (2010) Removal of uranium(VI) from aqueous solutions by nanoporous carbon and its chelating polymer composite. J Radioanal Nucl Chem 286:129–133CrossRefGoogle Scholar
  36. 36.
    Shao D, Wang X, Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188CrossRefGoogle Scholar
  37. 37.
    Zhao Y, Li J, Zhang S, Chen H, Shao D (2013) Efficient enrichment of uranium(VI) on amidoximated magnetite/graphene oxide composites. RSC Adv 3:18952–18959CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Hamza Shehzad
    • 1
  • Limin Zhou
    • 1
    Email author
  • Yun Wang
    • 1
  • Jinbo Ouyang
    • 1
  • Guolin Huang
    • 1
  • Zhirong Liu
    • 1
  • Zhao Li
    • 1
  1. 1.State Key Laboratory for Nuclear Resources and EnvironmentEast China University of TechnologyNanchangPeople’s Republic of China

Personalised recommendations