Sorption of radioactive cobalt onto nano calcium silicate/CuO composite modified by humic acid

  • H. S. Hassan
  • D. M. Imam
  • S. H. KenawyEmail author
  • G. T. El-Bassyouni
  • E. M. A. Hamzawy


The sorption process of Co(II) onto nanoparticles of calcium silicate doped with 5% CuO treated by humic acid was evaluated using batch technique. This process follows the second order kinetic model. Equilibrium isotherm models of Co(II) sorption onto the modified composite was 208.91 mg/g. Negative value of free energy change (ΔG0), confirms the spontaneous sorption of Co(II) ions onto the modified composite. The removal efficiency (R%) reached 96.9% using 0.5 g of the modified composite. Therefore, the composite could be used for treatment of radioactive waste containing 60Co.


Calcium silicate/CuO Cobalt Sorption Batch technique Kinetic model 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Abdel Rahman RO, Ibrahium H, Yung-Tse H (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565CrossRefGoogle Scholar
  2. 2.
    Hassan HS, Attallah MF, Yakout SM (2010) Sorption characteristics of an economical sorbent material used for removal radioisotopes of cesium and europium. J Radioanal Nucl Chem 286:17–26CrossRefGoogle Scholar
  3. 3.
    El-Sofany EA, Zaki AA, Mekhamer HS (2009) Kinetics and thermodynamics studies for the removal of Co2+ and Cs+ from aqueous solution by sand and clay soils. Radiochim Acta 97:23–32CrossRefGoogle Scholar
  4. 4.
    Li J, Wen F, Pan L, Liu Z, Dong Y (2013) Evaluation of permutite for removal of radiocobalt from nuclear wastewater. J Radioanal Nucl Chem 295:431–438CrossRefGoogle Scholar
  5. 5.
    Omar O, Arida H, Daifullah A (2009) Adsorption of 60Co radionuclides from aqueous solution by raw and modified bentonite. Appl Clay Sci 44:21–26CrossRefGoogle Scholar
  6. 6.
    Xia L, Yuantao C, Yaling C (2012) Effect of pH, ionic strength, foreign ions, humic acid and temperature on sorption of radionuclide 60Co on illite. J Radioanal Nucl Chem 292:1357–1366CrossRefGoogle Scholar
  7. 7.
    Mell P, Megyeri J, Riess L, Máthé Z, Csicsák J, Lázár K (2006) Sorption of Co, Cs, Sr and I onto argillaceous rock as studied by radiotracers. J Radioanal Nucl Chem 268:405–410CrossRefGoogle Scholar
  8. 8.
    Abd El-Aty AA, Kenawy SH, El-Bassyouni GT, Hamzawy EMA (2018) CuO doped wollastonite clusters for some anti-microbial and anti-fungi applications. Der Pharmacia Lettre 10:42–54Google Scholar
  9. 9.
    Abdel Moamen OA, Hassan HS, El-Sherif EA (2017) Binary oxide composite adsorbent for copper, nickel and zinc cations removal from aqueous solutions. Desalin Water Treat 82:219–233CrossRefGoogle Scholar
  10. 10.
    Ejhieh AN, Hushmandrad S (2010) Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Appl Catal A Gen 388:149–159CrossRefGoogle Scholar
  11. 11.
    Akat’Eva LV, Ivanov VK, Kozyukhin SA, Gladun VD, Baranchikov AE, Zhilov VI, Khol’kin AI (2016) Using extraction and sorption processes to obtain nanosized powders of calcium silicates and functional materials on their basis. Theor Found Chem Eng 50(4):490–497CrossRefGoogle Scholar
  12. 12.
    Qi G, Lei X, Li L, Yuan C, Sun Y, Chen J, Wang Y, Hao J (2015) Preparation and evaluation of a mesoporous calcium–silicate material (MCSM) from coal fly ash for removal of Co(II) from wastewater. Chem Eng J 279:777–787CrossRefGoogle Scholar
  13. 13.
    Attallah MF, Imam DM (2018) Green approach for radium isotopes removal from TENORM waste using humic substances as environmental friendly. Appl Radiat Isot 140:201–208CrossRefGoogle Scholar
  14. 14.
    Brigante M, Zanini G, Avena M (2010) Effect of humic acids on the adsorption of paraquat by goethite. J Hazard Mater 184:241–247CrossRefGoogle Scholar
  15. 15.
    Zhang X, Zhang P, Wu Z, Zhang L, Zeng G, Zhou C (2013) Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids Surf A Physicochem Eng Asp 435:85–90CrossRefGoogle Scholar
  16. 16.
    Vidali R, Remoundaki E, Tsezos M (2010) An experimental and modeling study of Cu2+ binding on humic acids at various solution conditions. Application of the NICA-Donnan model. Water Air Soil Pollut 218:487–497CrossRefGoogle Scholar
  17. 17.
    Doulia D, Leodopoulos CH, Gimouhopoulos K, Rigas F (2009) Adsorption of humic acid on acid-activated Greek bentonite. J Colloid Interface Sci 340:131–141CrossRefGoogle Scholar
  18. 18.
    Hassan HS, Kenawy SH, El-Bassyouni GT, Hamzawy EMA, Hassan RS (2018) Sorption behavior of cesium and europium radionuclides onto nano-sized calcium silicate. Part Sci Technol. Google Scholar
  19. 19.
    Hamzawy EMA, Kenawy SH, Abd El Aty AA, El-Bassyouni GT (2018) Characterization of wollastonite–copper nanoparticles synthesized by a wet method. Interceram 3:20–23Google Scholar
  20. 20.
    Qi-yan F, Xiang-dong L, Yu-jie C, Lei M, Qing-jun M (2007) Removal of humic acid from groundwater by electrocoagulation. J China Univ Min Technol 7:0513–0515Google Scholar
  21. 21.
    Mabrouk M, Elshebiney S, Kenawy SH, El-Bassyouni GT, Hamzawy EMA (2019) Novel, cost-effective, Cu-doped calcium silicate nanoparticles for bone fracture intervention: inherent bioactivity and in vivo performance. J Biomed Mater Res Part B Appl Biomater 107B:388–399CrossRefGoogle Scholar
  22. 22.
    Mabrouk M, Kenawy SH, El-Bassyouni GT, Soliman AAI, Hamzawy EMA (2019) Cancer cells treated by clusters of copper oxide doped calcium silicate. Adv Pharm Bull 9(1):102–109CrossRefGoogle Scholar
  23. 23.
    Senesi N, D’Orazio V, Ricca G (2003) Humic acids in the first generation of EUROSOILS. Geoderma 116:325–344CrossRefGoogle Scholar
  24. 24.
    Camilla R, Miliani C, Brunetto BG, Sgamellotti A (2006) Non-invasive identification of surface materials on marble artifacts with fiber optic mid-FTIR reflectance spectroscopy. Talanta 69:1221–1226CrossRefGoogle Scholar
  25. 25.
    Yuzer H, Kara M, Sabah E, Celik M (2018) Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems. J Hazard Mater 151:33–37CrossRefGoogle Scholar
  26. 26.
    Zhuang S, Wang J (2019) Removal of cobalt ion from aqueous solution using magnetic graphene oxide/chitosan composite. Environ Prog Sustain Energy 38:S32–S41CrossRefGoogle Scholar
  27. 27.
    Srivastava VC, Mall ID, Mishra IM (2008) Adsorption of toxic metal ions onto activated carbon study of sorption behaviour through characterization and kinetics. Chem Eng Process 47:1269–1280CrossRefGoogle Scholar
  28. 28.
    Khan M, Gee E, Choi J, Kumar M, Jung W, Timmes TC, Kim HI, Jeon B (2014) Adsorption of cobalt onto graphite Nano carbon–impregnated alginate beads: equilibrium, kinetics, and thermodynamics studies. Chem Eng Commun 201:403–418CrossRefGoogle Scholar
  29. 29.
    Hamzaoui M, Bestani B, Benderdouche N (2018) The use of linear and nonlinear methods for adsorption isotherm optimization of basic green 4-dye onto sawdust-based activated carbon. J Mater Environ Sci 9:1110–1118Google Scholar
  30. 30.
    Zhang X, Wang X, Chen Z (2017) Radioactive cobalt (II) removal from aqueous solutions using a reusable nanocomposite: kinetic, isotherms, and mechanistic study. Int J Environ Res Public Health 14:1453CrossRefGoogle Scholar
  31. 31.
    Liu CH, Shih YJ, Huang YH, Huang CP (2014) Kinetic and thermodynamic studies for adsorptive removal of Sr2+ using waste iron oxide. J Taiwan Inst Chem Eng 45:914–920CrossRefGoogle Scholar
  32. 32.
    El-Dessouky MI, El-Sourougy MR, Aly HF (1990) Investigations on the treatment of low- and medium- level radioactive liquid wastes. Isotopenpraxis 12:608–611Google Scholar
  33. 33.
    Smičiklas I, Dimović S, Plećaš I, Mitric M (2006) Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res 40:2267–2274CrossRefGoogle Scholar
  34. 34.
    Smičiklas I, Dimović S, Plećaš I (2007) Removal of Cs1+, Sr2+ and Co2+ from aqueous solution by adsorption on natural clinoptilolite. Appl Clay Sci 35:139–144CrossRefGoogle Scholar
  35. 35.
    Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2005) Bio sorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere 60:419–426CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • H. S. Hassan
    • 1
  • D. M. Imam
    • 1
  • S. H. Kenawy
    • 2
    Email author
  • G. T. El-Bassyouni
    • 2
  • E. M. A. Hamzawy
    • 3
  1. 1.Hot Laboratories and Waste Management CenterAtomic Energy AuthorityCairoEgypt
  2. 2.Refractories, Ceramics and Building Materials DepartmentNational Research CentreCairoEgypt
  3. 3.Glass Research DepartmentNational Research CentreCairoEgypt

Personalised recommendations