Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 1, pp 157–163 | Cite as

Radioactivity in coral skeletons and marine sediments collected from the St. Martin’s Island of Bangladesh

  • Al Amin M. Sirajul Islam
  • Mayeen Uddin KhandakerEmail author
  • M. H. Miah
  • Shahadat Hossain


Although the coral island ‘St. Martin’s’ serves as the most attractive place for leisure and tourism, but no data on radioactivity in coral skeleton is reported elsewhere. The mean activity concentrations (Bq/kg) for natural radionuclides 226Ra, 232Th and 40K in the sediment and coral reefs collected from the coastal waters of the Island were found to be 30.7 ± 2.1, 36.8 ± 2.8 and 388 ± 30, and 16.5 ± 1.3, 28.7 ± 1.9 and 334 ± 26, respectively; all lie within the respective world average values of 35, 35 and 450 Bq/kg except 232Th in sediment sample. Thus, the environment of coral reefs ecosystem of St. Martin’s Island pose an insignificant radiological threats to the local dwellers and tourists.


St. Martin’s island Natural radioactivity Coral reefs and sediment samples HPGe γ-ray spectrometry Health hazards 



The cooperation from the staffs of the radiation laboratory for the measurements of the samples are greatly acknowledged.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest to be declared.


  1. 1.
    Spalding M, Grenfell A (1997) New estimates of global and regional coral reef areas. Coral Reefs 16(12):225–230CrossRefGoogle Scholar
  2. 2.
    Hoover J (2007). Hawaii’s sea creatures. Mutual. ISBN 978-1-56647-220-3Google Scholar
  3. 3.
    Anagnostakis MJ, Hinis EP, Simopoulos SE, Angelopoulos MG (1996) Natural radioactivity mapping of greek surface soils. Environ Int 22(1):3–8CrossRefGoogle Scholar
  4. 4.
    Khandaker MU, Asaduzzaman K, Sulaiman AFB, Bradley DA, Isinkaye MO (2018) Elevated concentrations of naturally occurring radionuclides in heavy mineral-rich beach sands of Langkawi Island, Malaysia. Mar Pollut Bull 127:654–663CrossRefPubMedGoogle Scholar
  5. 5.
    Biswas MA (1983). Possible courses of actions for commercialization of beach sand minerals, Seminar on “Beach sand minerals in Economic Development”, 26–27, November, BAEC, Kalatoly, Cox’s BazarGoogle Scholar
  6. 6.
    Saha N, Webb GE, Zhao J-X (2016) Coral skeletal geochemistry as a monitor of inshore water quality. Sci Total Environ 566:652–684CrossRefPubMedGoogle Scholar
  7. 7.
    Yu KF (2012) Coral reefs in the South China Sea: their response to and records on past environmental changes. Sci China Earth Sci 55(8):1217–1229CrossRefGoogle Scholar
  8. 8.
    Amin YM, Mahat RH, Nor RM, Khandaker MU, Takleef GH, Bradley DA (2013) The presence of natural radioactivity and Cs-137 in the South China Sea bordering peninsular Malaysia. Radiat Prot Dosim 156:475–480CrossRefGoogle Scholar
  9. 9.
    Knoll GF (1989) Radiation detection and measurement. Wiley, LondonGoogle Scholar
  10. 10.
    Debertin K, Helmer RG (1980) Gamma and X-ray spectrometry with semiconductor detectors. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    IAEA (1987) Radiometric reference materials; RGU-1, RGTh-1 and RGK-1. International Atomic Energy Agency (IAEA). Report: IAEA/RL/148, ViennaGoogle Scholar
  12. 12.
    Khandaker MU, Heffny NA, Amin YM, Bradley DA (2019) Elevated concentration of radioactive potassium in edible algae cultivated in Malaysian seas and estimation of ingestion dose to humans. Algal Res 38:101386CrossRefGoogle Scholar
  13. 13.
    Khandaker MU, Uwatse OB, Shamsul Khairi KA, Faruque MRI, Bradley DA (2019) Terrestrial radionuclides in surface (Dam) Water and concomitant dose in metropolitan Kuala Lumpur. Radiation Protection Dosimetry, pp 1–8.
  14. 14.
    Abedin MJ, Karim MR, Hossain S, Deb N, Kamal M, Miah MHA, Khandaker MU (2019) Spatial distribution of radionuclides in agricultural soil in the vicinity of a coal-fired brick kiln. Arab J Geosci 12:236–247CrossRefGoogle Scholar
  15. 15.
    Chowdhury MI, Kamal M, Alam MN, Yeasmin S, Mostafa MN (2005) Distribution of naturally occurring radionuclides in soils of the southern districts of Bangladesh. Radiat Prot Dosim 118(1):126–130CrossRefGoogle Scholar
  16. 16.
    Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by products. Health Phys 48(1):87–95CrossRefPubMedGoogle Scholar
  17. 17.
    Yu KN, Guan ZJ, Stokes MJ, Young ECM (1992) The assessment of the natural radiation dose committed to the Hong Kong people. J Environ Radioact 17(1):31–48CrossRefGoogle Scholar
  18. 18.
    Ravisankar R, Chandramohan J, Chandrasekaran A, Jebakumar JPP, Vijayalakshmi I, Vijayagopal P, Venkatraman B (2015) Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Mar Pollut Bull 97:419–430CrossRefPubMedGoogle Scholar
  19. 19.
    Shuaibu HK, Khandaker MU, Alrefae T, Bradley DA (2017) Assessment of natural radioactivity and gamma-ray dose in monazite rich black Sand Beach of Penang Island, Malaysia. Mar Pollut Bull 119:423–428CrossRefPubMedGoogle Scholar
  20. 20.
    Kolo MT, Abdul Aziz SAB, Khandaker MU, Asaduzzaman K, Amin YM (2015) Evaluation of radiological risks due to natural radioactivity around Lynas advanced material plant environment, Kuantan, Pahang, Malaysia. Environ Sci Pollut Res 22(17):13127–13136CrossRefGoogle Scholar
  21. 21.
    Hewson GS, Hartley BM (1990) Radiation research priorities in the mineral sand industry. J Radiol Prot 10(3):221–229CrossRefGoogle Scholar
  22. 22.
    Ansary MM (1997) Study of radioactivity in beach sand minerals and soils for the estimation of radiation dose. M.Sc. thesis, Dept. of Phy. CU, Ctg., BangladeshGoogle Scholar
  23. 23.
    Sam K, ElGanawi A, Ahamed MO, ElKhangi F (1998) Distribution of some natural and anthropogenic radionuclides in Sudanese harbour sediments. J Radioanal Nucl Chem 237(11):103–107CrossRefGoogle Scholar
  24. 24.
    Papaefthymiou H, Papatheodorou G, Moustakli A, Christodoulou D, Geraga M (2007) Natural radionuclides and 137Cs distributions and their relationship with sedimentological processes in Patras Harbour, Greece. J Environ Radioact 94(2):55–74CrossRefPubMedGoogle Scholar
  25. 25.
    Sugandhi S, Joshi VM, Ravi P (2014) Studies on natural and anthropogenic radionuclides in sediment and biota of Mumbai Harbour Bay. J Radioanal Nucl Chem 300(1):67–70CrossRefGoogle Scholar
  26. 26.
    Akram M, Qureshi R, Ahmad N, Solaija T, Mashiatullah A, Afzal M et al (2006) Concentration of natural and artificial radionuclides in bottom sedimentsof Karachi harbour/Manora channel, Pakistan coast (Arabian sea). J Chem Soc Pak 28(3):306–312Google Scholar
  27. 27.
    Al-Trabulsy H, Khater A, Habbani F (2011) Radioactivity levels and radiologicalhazard indices at the Saudi coastline of the Gulf of Aqaba. Radiat Phys Chem 80(3):343–348CrossRefGoogle Scholar
  28. 28.
    El Mamoney M, Khater AE (2004) Environmental characterization and radioecological impacts of non-nuclear industries on the Red Sea coast. J Environ Radioact 73(2):151–168CrossRefPubMedGoogle Scholar
  29. 29.
    Higgy R (2000) Natural radionuclides and plutonium isotopes in soil and shore sediments on Alexandria Mediterranean Sea coast of Egypt. Radiochim Acta 88(1):47–54CrossRefGoogle Scholar
  30. 30.
    Abdi MR, Hassanzadeh S, Kamali M, Raji HR (2009) 238U, 232Th, 40K and137Cs activity concentrations along the southern coast of the Caspian Sea, Iran. Mar Pollut Bull 58(5):658–662CrossRefPubMedGoogle Scholar
  31. 31.
    Mohamed CAR, Mahmood ZUW, Ahmad Z, Ishak AK (2010) Enrichment of natural radium isotopes in the southern South China Sea surface sediments. Coast Mar Sci 34(1):165–171Google Scholar
  32. 32.
    Chaudhuri P, Naskar N, Lahiri S (2017) Measurement of background radioactivity in surface soil of Indian Sundarban. J Radioanal Nucl Chem 311(3):1947–1952CrossRefGoogle Scholar
  33. 33.
    Ramsiya M, Joseph A, Eappen KP, Visnuprasad AK (2019) Activity concentrations of radionuclides in soil samples along the coastal areas of Kerala, India and the assessment of radiation hazard indices. J Radioanal Nucl Chem 320(2):291–298CrossRefGoogle Scholar
  34. 34.
    UNSCEAR (2000) United Nations scientific committee on the effects of atomic radiation. Report of UNSCEAR to the General Assembly, United Nations, New York, USA, 90–125Google Scholar
  35. 35.
    Sabatier P, Reyss J-L, Hall-Spencer JM et al (2012) 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest coldwater coral reef. Biogeosciences 9(3):1253–1265CrossRefGoogle Scholar
  36. 36.
    Moore WS, Krishnaswami S (1972) Coral growth rates using 228Ra and 210Pb. Earth Planet Sci Lett 15(2):187–190CrossRefGoogle Scholar
  37. 37.
    NEA-OECD (1979) Exposure to radiation from natural radioactivity in building materials. Report by NEA Group of Experts of the Nuclea Energy Agency, OECD, Paris, FranceGoogle Scholar
  38. 38.
    ICRP (1990). Recommendations of the International Commission on Radiological Protection, in ICRP Publication 60, Pergamon Press Annals of ICRP, Oxford, UKGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ChittagongChittagongBangladesh
  2. 2.Center for Biomedical Physics, School of Healthcare and Medical SciencesSunway UniversityBandar SunwayMalaysia
  3. 3.Atomic Energy CentreBangladesh Atomic Energy CommissionChittagongBangladesh

Personalised recommendations