Photonuclear production and radiochemical separation of medically relevant radionuclides: 67Cu

  • Ramiz A. AlievEmail author
  • Sergey S. Belyshev
  • Alexander A. Kuznetsov
  • Leonid Z. Dzhilavyan
  • Vadim V. Khankin
  • Gleb Yu. Aleshin
  • Andrey G. Kazakov
  • Anna B. Priselkova
  • Stepan N. Kalmykov
  • Boris S. Ishkhanov


Production of medical radionuclide 67Cu by the irradiation of Zn of natural isotopic composition by bremsstrahlung photons of maximum energy of 55 MeV was studied. Production yields of 67Cu and other activation products were determined. The yield of 67Cu is (2.34 ± 0.07) × 105 Bq/(μA h g/cm2) at EOB. The experimental data were compared with the results of other experiments and theoretical calculations based on the statistical model in the TALYS software and on the combined model of photonuclear reactions. Technique of chemical separation of 67Cu from irradiated zinc target based on extraction chromatography using CU Resin was applied. Radiochemical yield was > 95%, separation time was 1 h. The possibility of production of medical quantities was discussed.


Copper-67 Radionuclide therapy Photonuclear reactions Extraction chromatography 



  1. 1.
    Novak-Hofer I, Schubiger AP (2002) Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur J Nucl Med Mol Imaging 29:821–830. CrossRefPubMedGoogle Scholar
  2. 2.
    Chu SYF, Ekström LP, Firestone RB. WWW table of radioactive isotopes. Database version 1999-02-28 n.d.Google Scholar
  3. 3.
    Smith NA, Bowers DL, Ehst DA (2012) The production, separation, and use of 67Cu for radioimmunotherapy: a review. Appl Radiat Isot 70:2377–2383. CrossRefPubMedGoogle Scholar
  4. 4.
    Medvedev DG, Mausner LF, Meinken GE, Kurczak SO, Schnakenberg H, Dodge CJ et al (2012) Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: closing the 68Zn cycle. Appl Radiat Isot 70:423–429. CrossRefPubMedGoogle Scholar
  5. 5.
    Katabuchi T, Watanabe S, Ishioka NS, Iida Y, Hanaoka H, Endo K et al (2008) Production of 67Cu via the 68Zn(p,2p)67Cu reaction and recovery of 68Zn target. J Radioanal Nucl Chem 277:467–470. CrossRefGoogle Scholar
  6. 6.
    Szelecsényi F, Steyn GF, Dolley SG, Kovács Z, Vermeulen C, van der Walt TN (2009) Investigation of the 68Zn(p,2p)67Cu nuclear reaction: new measurements up to 40 MeV and compilation up to 100 MeV. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 267:1877–1881. CrossRefGoogle Scholar
  7. 7.
    Stoll T, Kastleiner S, Shubin YN, Coenen HH, Qaim SM (2002) Excitation functions of proton induced reactions on 68Zn from threshold up to 71 MeV, with specific reference to the production of 67Cu. Radiochim Acta 90:309–313CrossRefGoogle Scholar
  8. 8.
    Pupillo G, Sounalet T, Michel N, Mou L, Esposito J, Haddad F (2018) New production cross sections for the theranostic radionuclide 67Cu. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 415:41–47. CrossRefGoogle Scholar
  9. 9.
    Kastleiner S, Coenen HH, Qaim SM (1999) Possibility of production of 67Cu at a small-sized cyclotron via the (p, a)-reaction on enriched 70Zn. Radiochim Acta 84:107CrossRefGoogle Scholar
  10. 10.
    Hilgers K, Stoll T, Skakun Y, Coenen H, Qaim S (2003) Cross-section measurements of the nuclear reactions natZn(d,x)64Cu, 66Zn(d,α)64Cu and 68Zn(p,αn)64Cu for production of 64Cu and technical developments for small-scale production of 67Cu via the 70Zn(p,α)67Cu process. Appl Radiat Isot 59:343–351. CrossRefPubMedGoogle Scholar
  11. 11.
    Jamriska DJ Sr, Taylor WA, Ott MA, Heaton RC, Phillips DR, Fowler MM (1995) Activation rates and chemical recovery of 67Cu produced with low energy proton irradiation of enriched 70Zn targets. J Radioanal Nucl Chem 195:263–270. CrossRefGoogle Scholar
  12. 12.
    Kozempel J, Abbas K, Simonelli F, Bulgheroni A, Holzwarth U, Gibson N (2012) Preparation of 67Cu via deuteron irradiation of 70Zn. Radiochim Acta 100:419–424. CrossRefGoogle Scholar
  13. 13.
    Skakun Y, Qaim SM (2004) Excitation function of the 64Ni(α, p)67Cu reaction for production of 67Cu. Appl Radiat Isot 60:33–39. CrossRefGoogle Scholar
  14. 14.
    Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M et al (2018) Small-scale production of 67Cu for a preclinical study via the 64Ni(α p)67Cu channel. Nucl Med Biol 59:56–60. CrossRefPubMedGoogle Scholar
  15. 15.
    Uddin MS, Kim K, Nadeem M, Sudár S, Kim G (2018) Measurements of excitation functions of α-particle induced reactions on natNi: possibility of production of the medical isotopes 61Cu and 67Cu. Radiochim Acta 106:87–93. CrossRefGoogle Scholar
  16. 16.
    Uddin MS, Rumman-uz-Zaman M, Hossain SM, Qaim SM (2014) Radiochemical measurement of neutron-spectrum averaged cross sections for the formation of 64Cu and 67Cu via the (n, p) reaction at a TRIGA Mark-II reactor: feasibility of simultaneous production of the theragnostic pair 64Cu/67Cu. Radiochim Acta 102:473–480. CrossRefGoogle Scholar
  17. 17.
    Johnsen AM, Heidrich BJ, Durrant CB, Bascom AJ, Ünlü K (2015) Reactor production of 64Cu and 67Cu using enriched zinc target material. J Radioanal Nucl Chem 305:61–71. CrossRefGoogle Scholar
  18. 18.
    Spahn I, Coenen HH, Qaim SM (2004) Enhanced production possibility of the therapeutic radionuclides 64Cu, 67Cu and 89Sr via (n, p) reactions induced by fast spectral neutrons. Radiochim Acta 92:183–186. CrossRefGoogle Scholar
  19. 19.
    Kin T, Nagai Y, Iwamoto N, Minato F, Iwamoto O, Hatsukawa Y et al (2013) New production routes for medical isotopes 64Cu and 67Cu using accelerator neutrons. J Phys Soc Jpn 82:1–8. CrossRefGoogle Scholar
  20. 20.
    Qaim SM, Scholten B, Neumaier B (2018) New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem 318:1493–1509. CrossRefGoogle Scholar
  21. 21.
    Qaim SM (2012) The present and future of medical radionuclide production. Radiochim Acta 100:635–651. CrossRefGoogle Scholar
  22. 22.
    Qaim SM (2017) Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl Med Biol 44:31–49. CrossRefPubMedGoogle Scholar
  23. 23.
    Qaim SM, Spahn I (2018) Development of novel radionuclides for medical applications. J Label Compd Radiopharm 61:126–140. CrossRefGoogle Scholar
  24. 24.
    Kozempel J, Abbas K, Simonelli F, Zampese M, Holzwarth U, Gibson N et al (2007) A novel method for n.c.a 64Cu production by the 64Zn(d, 2p)64Cu reaction and dual ion-exchange column chromatography. Radiochim Acta 95:75. CrossRefGoogle Scholar
  25. 25.
    von Sioufi AE, Erdös P, Stoll P (1958) (gamma, np)-Prozesse am 92Mo und 66Zn. Helv Phys Acta 30:264–265Google Scholar
  26. 26.
    Malinin AB, Kurchatova LN, Litvitskii AM, Abdukayumov M, Levin VI (1970) Formation of 67Cu According to the reaction 68Zn(gamma, p) on a retarded beam of an electron accelerator with an energy of 25 MeV. Sov Radiochem (Engl Transl) 12:748–751Google Scholar
  27. 27.
    Marceau N, Kruck TPA, McConnell DB, Aspin N (1970) The production of copper-67 from natural zinc using a linear accelerator. Int J Appl Radiat Isot 21:667–669CrossRefPubMedGoogle Scholar
  28. 28.
    Bülow B, Johnsson B, Nilsson M (1977) The (gamma, p) reaction on 30Si, 68Zn and 130Te at intermediate energies. Z Phys A 282:261–265CrossRefGoogle Scholar
  29. 29.
    Yagi MKK (1978) Preparation of carrier-free 67Cu by the 68Zn(gamma, p) reaction. Int J Appl Radiat Isot 29:757–759CrossRefGoogle Scholar
  30. 30.
    Polak P, Geradts J, van der Vlist RLL (1986) Production of 67Cu from ZnO Targets. Radiochim Acta 40:169–173. CrossRefGoogle Scholar
  31. 31.
    Danon Y, Block RC, Testa R, Moore H (2008) Medical isotope production using a 60 MeV linear electron accelerator. NS Trans 98:894–895Google Scholar
  32. 32.
    Aizatsky NI, Diky NP, Dovbnya AN, Ehst D, Lyashko YV, Nikiforov VI, Tenishev AE, Torgovkin AV, Uvarov VL, Shevchenko VA, Shramenko BI (2010) 99Mo and 67Cu isotope yields under production conditions on NSC KIPT electron accelerator KUT-30. Probl At Sci Technol 2(2):140–144.
  33. 33.
    Dzhilavyan LZ, Karev AI, Raevsky VG (2011) Possibilities for the production of radioisotopes for nuclear-medicine problems by means of photonuclear reactions. Phys At Nucl 74:1690–1696. CrossRefGoogle Scholar
  34. 34.
    Starovoitova VN, Cole PL, Grimm TL (2015) Accelerator-based photoproduction of promising beta-emitters 67Cu and 47Sc. J Radioanal Nucl Chem 305:127–132. CrossRefGoogle Scholar
  35. 35.
    Starovoitova VN, Tchelidze L, Wells DP (2014) Production of medical radioisotopes with linear accelerators. Appl Radiat Isot 85:39–44. CrossRefPubMedGoogle Scholar
  36. 36.
    Gopalakrishna A, Suryanarayana SV, Naik H, Dixit TS, Nayak BK, Kumar A et al (2018) Production, separation and supply prospects of 67Cu with the development of fast neutron sources and photonuclear technology. Radiochim Acta 106:549–557. CrossRefGoogle Scholar
  37. 37.
    Luo W, Bobeica M, Gheorghe I, Filipescu DM, Niculae D, Balabanski DL (2016) Estimates for production of radioisotopes of medical interest at extreme light infrastructure—nuclear physics facility. Appl Phys B 122:8. CrossRefGoogle Scholar
  38. 38.
    Bobeica M, Niculae D, Balabanski D, Filipescu D, Gheorghe I, Ghita D (2016) Radioisotope production for medical applications at ELI-NP. Rom Rep Phys 68(Suppl):847–883Google Scholar
  39. 39.
    Luo W (2016) Production of medical radioisotope 64Cu by photoneutron reaction using ELI-NP γ-ray beam. Nucl Sci Technol 27:96. CrossRefGoogle Scholar
  40. 40.
    Karev AI, Lebedev AN, Raevsky VG, Ermakov AN, Kamanin AN, Khankin VV, Pakhomov NI, Shvedunov VI, Sobenin NP, Brothers L, Wilhide L. 55 MeV special purpose race-track microtron commissioning. In: Proceedings of XXII Russian particle accelerator conference RuPAC-2010, 2010, pp 316–318.Google Scholar
  41. 41.
    Belyshev SS, Stopani KA, Troschiev SY, Kurilik AS, Kuznetsov AA (2011) Measuring nuclear reaction yields in a procedure based on decay chain analysis. Mosc Univ Phys Bull 66:363–368. CrossRefGoogle Scholar
  42. 42.
    Belyshev SS, Ermakov AN, Ishkhanov BS, Khankin VV, Kurilik AS, Kuznetsov AA et al (2014) Studying photonuclear reactions using the activation technique. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 745:133–137. CrossRefGoogle Scholar
  43. 43.
    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P et al (2003) Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 506:250–303. CrossRefGoogle Scholar
  44. 44.
    Ishkhanov BS, Orlin VN (2011) Combined model of photonucleon reactions. Phys At Nucl 74:19–39. CrossRefGoogle Scholar
  45. 45.
    Ishkhanov BS, Orlin VN (2015) Modified version of the combined model of photonucleon reactions. Phys At Nucl 78:557–573. CrossRefGoogle Scholar
  46. 46.
    Varlamov VV, Efimkin NG, Ishkhanov BS, SapunenkoV V, Stepanov ME (1995) Evaluation of cross sections for 63,65Cu(g, np) and 63,65Cu(g, p) reactions in the GDR region and isospin disintegration in GDR nuclei. Bull Russ Acad Sci Phys 59:911–920Google Scholar
  47. 47.
    Lee YO, Han Y, Chang J (2000) KAERI photonuclear data library (INDC(NDS)--409). International Atomic Energy Agency (IAEA).
  48. 48.
    A.J. Koning SH and MCD. Talys 1.0. Int. Conf. Nucl. Data Sci. Technol., Nice, France: 2007, p. 211–4.Google Scholar
  49. 49.
    Chadwick M.B. and Young P.G. Photonuclear reactions in the GNASH Code: benchmarking model calculations for reactions on lead up to 140 MeV, Lawrence Livermore National Laboratory UCRL-ID-118721 1994.Google Scholar
  50. 50.
    Hastings WK (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika 57:97–109CrossRefGoogle Scholar
  51. 51.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092. CrossRefGoogle Scholar
  52. 52.
    Ermakov AN, Ishkhanov BS, Kamanin AN, Khankin V V, Ovchinnikova LY, Pakhomov NI et al (2014) Design of a linear accelerator with a magnetic mirror on the beam energy of 45 MeV. In: Obninsk: joint accelerator conferences website, pp 251–253.Google Scholar
  53. 53.
    Borrok DM, Wanty RB, Ridley WI, Wolf R, Lamothe PJ, Adams M (2007) Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement. Chem Geol 242:400–414. CrossRefGoogle Scholar
  54. 54.
    Kawabata M, Hashimoto K, Saeki H, Sato N, Motoishi S, Takakura K et al (2015) Production and separation of 64Cu and 67Cu using 14 MeV neutrons. J Radioanal Nucl Chem 303:1205–1209. CrossRefGoogle Scholar
  55. 55.
    Dirks C, Scholten B, Happel S, Zulauf A, Bombard A, Jungclas H (2010) Characterisation of a Cu selective resin and its application to the production of 64Cu. J Radioanal Nucl Chem 286:671–674. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Ramiz A. Aliev
    • 1
    • 2
    Email author
  • Sergey S. Belyshev
    • 3
  • Alexander A. Kuznetsov
    • 3
    • 5
  • Leonid Z. Dzhilavyan
    • 4
  • Vadim V. Khankin
    • 5
  • Gleb Yu. Aleshin
    • 2
  • Andrey G. Kazakov
    • 1
    • 2
  • Anna B. Priselkova
    • 5
  • Stepan N. Kalmykov
    • 1
    • 2
  • Boris S. Ishkhanov
    • 3
    • 5
  1. 1.National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussia
  3. 3.Physics DepartmentLomonosov Moscow State UniversityMoscowRussia
  4. 4.Institute for Nuclear ResearchRussian Academy of SciencesMoscowRussia
  5. 5.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations