Advertisement

Method for detecting and characterising actinide-bearing micro-particles in soils and sediment of the Fukushima Prefecture, Japan

  • Hugo Jaegler
  • Fabien Pointurier
  • Yuichi Onda
  • Jaime F. Angulo
  • Nina M. Griffiths
  • Agnes Moureau
  • Anne-Laure Faure
  • Olivier Marie
  • Amélie Hubert
  • Olivier EvrardEmail author
Article
  • 202 Downloads

Abstract

The Fukushima Dai-ichi nuclear power plant accident released limited amounts of actinides on soils of Japan. Characterisation of these particles is essential to determine the fate of actinides in the environment. The method presented in this paper, based on α-tracks detections, microscope observations and mass-spectrometry measurements, was designed to identify and characterize actinide-bearing particles in soil samples. The method was tested on a road dust sample collected in the main radioactive plume of the Fukushima region. Accordingly, α-tracks detection was demonstrated to provide a powerful technique to localise these particles and prepare their morphological, elemental and isotopic characterization.

Keywords

Fukushima Dai-ichi nuclear power plant accident Actinide-bearing particles Solid state nuclear track detector Microscope characterisation Mass spectrometry 

Notes

Acknowledgements

The sample collection was supported by the AMORAD (ANR-11-RSNR-0002) project, funded by the French National Research Agency (ANR, Agence Nationale de la Recherche). Hugo Jaegler received a PhD fellowship from the French Atomic Energy Commission (CEA, Commissariat à l’Energie Atomique et aux Energies Alternatives). The authors declare no competing financial interest.

Supplementary material

10967_2019_6575_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4397 kb)

References

  1. 1.
    Sakaguchi A, Steier P, Takahashi Y, Yamamoto M (2014) Isotopic compositions of 236U and Pu isotopes in “black substances” collected from roadsides in Fukushima prefecture: fallout from the Fukushima Dai-Ichi nuclear power plant accident. Environ Sci Technol 48(7):3691–3697.  https://doi.org/10.1021/es405294s CrossRefPubMedGoogle Scholar
  2. 2.
    Zheng J, Tagami K, Uchida S (2013) Release of plutonium isotopes into the environment from the fukushima daiichi nuclear power plant accident: what is known and what needs to be known. Environ Sci Technol 47(17):9584–9595.  https://doi.org/10.1021/es402212v CrossRefPubMedGoogle Scholar
  3. 3.
    Evrard O, Pointurier F, Onda Y et al (2014) Novel insights into Fukushima nuclear accident from isotopic evidence of plutonium spread along coastal rivers. Environ Sci Technol 48(16):9334–9340.  https://doi.org/10.1021/es501890n CrossRefPubMedGoogle Scholar
  4. 4.
    Jaegler H, Pointurier F, Onda Y et al (2018) Plutonium isotopic signatures in soils and their variation (2011–2014) in sediment transiting a coastal river in the Fukushima Prefecture, Japan. Environ Pollut 240:167–176.  https://doi.org/10.1016/j.envpol.2018.04.094 CrossRefPubMedGoogle Scholar
  5. 5.
    Schneider S, Bister S, Christl M et al (2017) Radionuclide pollution inside the Fukushima Daiichi exclusion zone, part 2: forensic search for the “Forgotten” contaminants Uranium-236 and plutonium. Appl Geochem 85:194–200.  https://doi.org/10.1016/j.apgeochem.2017.05.022 CrossRefGoogle Scholar
  6. 6.
    Shinonaga T, Steier P, Lagos M, Ohkura T (2014) Airborne plutonium and non-natural uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions. Environ Sci Technol 48(7):3808–3814.  https://doi.org/10.1021/es404961w CrossRefPubMedGoogle Scholar
  7. 7.
    Yang G, Tazoe H, Yamada M (2016) Determination of 236U in environmental samples by single extraction chromatography coupled to triple-quadrupole inductively coupled plasma-mass spectrometry. Anal Chim Acta 944:44–50.  https://doi.org/10.1016/j.aca.2016.09.033 CrossRefPubMedGoogle Scholar
  8. 8.
    Yang G, Tazoe H, Hayano K et al (2017) Isotopic compositions of 236U, 239Pu, and 240Pu in soil contaminated by the Fukushima Daiichi nuclear power plant accident. Sci Rep 7(1):13619.  https://doi.org/10.1038/s41598-017-13998-6 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Salbu B (2011) Radionuclides released to the environment following nuclear events. Integr Environ Assess Manag 7(3):362–364.  https://doi.org/10.1002/ieam.232 CrossRefPubMedGoogle Scholar
  10. 10.
    López JG, Jiménez-Ramos MC, García-León M, García-Tenorio R (2007) Characterisation of hot particles remaining in soils from Palomares (Spain) using a nuclear microprobe. Nucl Instrum Methods Phys Res, Sect B 260(1):343–348.  https://doi.org/10.1016/j.nimb.2007.02.044 CrossRefGoogle Scholar
  11. 11.
    Lind OC, Salbu B, Janssens K et al (2007) Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968. Sci Total Environ 376(1–3):294–305.  https://doi.org/10.1016/J.SCITOTENV.2006.11.050 CrossRefPubMedGoogle Scholar
  12. 12.
    Boulyga SF, Prohaska T (2008) Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters. Anal Bioanal Chem 390(2):531–539.  https://doi.org/10.1007/s00216-007-1575-6 CrossRefPubMedGoogle Scholar
  13. 13.
    Ikehara R, Suetake M, Komiya T et al (2018) Novel method of quantifying radioactive cesium-rich microparticles (CsMPs) in the environment from the Fukushima Daiichi nuclear power plant. Environ Sci Technol 52(11):6390–6398.  https://doi.org/10.1021/acs.est.7b06693 CrossRefPubMedGoogle Scholar
  14. 14.
    Furuki G, Imoto J, Ochiai A et al (2017) Caesium-rich micro-particles: a window into the meltdown events at the Fukushima Daiichi nuclear power plant. Sci Rep 7(42731):1–10.  https://doi.org/10.1038/srep42731 CrossRefGoogle Scholar
  15. 15.
    Imoto J, Ochiai A, Furuki G et al (2017) Isotopic signature and nano-texture of cesium-rich micro-particles: release of uranium and fission products from the Fukushima Daiichi nuclear power plant. Sci Rep 7(1):5409.  https://doi.org/10.1038/s41598-017-05910-z CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Abe Y, Iizawa Y, Terada Y et al (2014) Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal Chem 86(17):8521–8525.  https://doi.org/10.1021/ac501998d CrossRefPubMedGoogle Scholar
  17. 17.
    Adachi K, Kajino M, Zaizen Y, Igarashi Y (2013) Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci Rep.  https://doi.org/10.1038/srep02554 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kaltofen M, Gundersen A (2017) Radioactively-hot particles detected in dusts and soils from Northern Japan by combination of gamma spectrometry, autoradiography, and SEM/EDS analysis and implications in radiation risk assessment. Sci Total Environ 607–608:1065–1072.  https://doi.org/10.1016/j.scitotenv.2017.07.091 CrossRefPubMedGoogle Scholar
  19. 19.
    Kirchner G, Bossew P, De Cort M (2012) Radioactivity from Fukushima Dai-ichi in air over Europe; part 2: what can it tell us about the accident? J Environ Radioact 114:35–40.  https://doi.org/10.1016/j.jenvrad.2011.12.016 CrossRefPubMedGoogle Scholar
  20. 20.
    Schneider S, Walther C, Bister S et al (2013) Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations. Sci Rep.  https://doi.org/10.1038/srep02988 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ochiai A, Imoto J, Suetake M et al (2018) Uranium dioxides and debris fragments released to the environment with cesium-rich microparticles from the Fukushima Daiichi nuclear power plant. Environ Sci Technol.  https://doi.org/10.1021/acs.est.7b06309 CrossRefPubMedGoogle Scholar
  22. 22.
    Yamamoto M, Sakaguchi A, Ochiai S et al (2014) Isotopic Pu, Am and Cm signatures in environmental samples contaminated by the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 132:31–46.  https://doi.org/10.1016/j.jenvrad.2014.01.013 CrossRefPubMedGoogle Scholar
  23. 23.
    Yoshida S, Muramatsu Y, Tagami K et al (2000) Concentrations of uranium and 235U/238U ratios in soil and plant samples collected around the uranium conversion building in the JCO campus. J Environ Radioact 50(1–2):161–172.  https://doi.org/10.1016/S0265-931X(00)00075-8 CrossRefGoogle Scholar
  24. 24.
    Yoshida S, Muramatsu Y, Tagami K, Uchida S (1998) Concentrations of lanthanide elements, Th, and U in 77 Japanese surface soils. Environ Int 24(3):275–286.  https://doi.org/10.1016/S0160-4120(98)00006-3 CrossRefGoogle Scholar
  25. 25.
    Bu W, Zheng J, Ketterer ME et al (2017) Development and application of mass spectrometric techniques for ultra-trace determination of 236U in environmental samples—a review. Anal Chim Acta 995:1–20.  https://doi.org/10.1016/j.aca.2017.09.029 CrossRefPubMedGoogle Scholar
  26. 26.
    Shao Y, Yang G, Xu D et al (2019) First report on global fallout 236U and uranium atom ratios in soils from Hunan Province, China. J Environ Radioact 197:1–8.  https://doi.org/10.1016/J.JENVRAD.2018.11.009 CrossRefPubMedGoogle Scholar
  27. 27.
    Esaka F, Magara M (2014) Secondary ion mass spectrometry combined with alpha track detection for isotope abundance ratio analysis of individual uranium-bearing particles. Talanta 120:349–354.  https://doi.org/10.1016/j.talanta.2013.12.029 CrossRefPubMedGoogle Scholar
  28. 28.
    Vlasova IE, Kalmykov SN, Konevnik YV et al (2008) Alpha track analysis and fission track analysis for localizing actinide-bearing micro-particles in the Yenisey River bottom sediments. Radiat Meas 43:S303–S308.  https://doi.org/10.1016/j.radmeas.2008.04.029 CrossRefGoogle Scholar
  29. 29.
    Zhuk IV, Lomonosova EM, Yaroshevich OI et al (1995) Investigation of vertical migration of alpha-emitting nuclides in soils for southern regions of the Republic of Belarus. Radiat Meas 25(1–4):385–387CrossRefGoogle Scholar
  30. 30.
    Boulyga SF, Becker JS (2001) Determination of uranium isotopic composition and 236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry. Anal Chem 370:612–617CrossRefGoogle Scholar
  31. 31.
    Boulyga SF, Desideri D, Meli MA et al (2003) Plutonium and americium determination in mosses by laser ablation ICP-MS combined with isotope dilution technique. Int J Mass Spectrom 226(3):329–339.  https://doi.org/10.1016/S1387-3806(03)00024-1 CrossRefGoogle Scholar
  32. 32.
    Nishihara K, Iwamoto H, Suyama K (2012) Estimation of fuel compositions in Fukushima-Daiichi nuclear power plant (Date of access: 30/08/2018)Google Scholar
  33. 33.
    Kelley JM, Bond LA, Beasley TM (1999) Global distribution of Pu isotopes and 237Np. Sci Total Environ 237–238:483–500CrossRefPubMedGoogle Scholar
  34. 34.
    Ellis WR, Wall T (1982) Use of particle track analysis to measure fissile particle size distributions in contaminated soils. Nucl Instrum Methods Phys Res 200(2–3):411–415.  https://doi.org/10.1016/0167-5087(82)90463-X CrossRefGoogle Scholar
  35. 35.
    Fauré AL, Rodriguez C, Marie O et al (2014) Detection of traces of fluorine in micrometer sized uranium bearing particles using SIMS. J Anal At Spectrom 29(1):145–151.  https://doi.org/10.1039/c3ja50245g CrossRefGoogle Scholar
  36. 36.
    Adams JAS, Osmond JK, Rogers JJW (1959) The geochemistry of thorium and uranium. Phys Chem Earth 3:298–348CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Hugo Jaegler
    • 1
  • Fabien Pointurier
    • 2
  • Yuichi Onda
    • 3
  • Jaime F. Angulo
    • 4
  • Nina M. Griffiths
    • 4
  • Agnes Moureau
    • 4
  • Anne-Laure Faure
    • 2
  • Olivier Marie
    • 2
  • Amélie Hubert
    • 2
  • Olivier Evrard
    • 1
    Email author
  1. 1.Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité Mixte de Recherche 8212 (CEA-CNRS-UVSQ)Université Paris-SaclayGif-sur-Yvette CedexFrance
  2. 2.CEA, DAM, DIFArpajonFrance
  3. 3.Center for Research in Isotopes and Environmental Dynamics (CRIED)University of TsukubaTsukubaJapan
  4. 4.Laboratoire de Radio Toxicologie, CEAUniversité Paris-SaclayBruyères-le-ChâtelFrance

Personalised recommendations