Advertisement

Adsorption properties of manganese oxides prepared in aqueous-ethanol medium toward Sr(II) ions

  • A. I. IvanetsEmail author
  • V. V. Milutin
  • V. G. Prozorovich
  • T. F. Kouznetsova
  • N. A. Nekrasova
Article

Abstract

In this study, nanostructured manganese oxides were synthesized using sol–gel method by reduction of KMnO4 with ethyl alcohol. Firstly, the effect of K+, Na+, Ca2+, and Mg2+ ions as templates on their structure and adsorption properties was studied. According to X-ray diffraction analysis, all samples were identified as amorphous phases. Fourier-transform infrared spectroscopy confirmed that prepared sorption materials had a band around 760 cm−1, characteristic for the tunnel-type manganese oxides. The BET surface area of the obtained samples was 188–293 m2 g−1, the sorption volume of 0.431–1.136 m3 g−1, and the average pore size of 6–20 nm. The maximum Sr2+ sorption capacity of 120 mg g−1 was observed for the non-templated manganese oxide sorbents synthesized at 25 °C during 5 h. The calculated isotherm parameters and corresponding correlation coefficients revealed that the Sr2+ uptake process followed the Freundlich and Redlich-Peterson models for metal ion-templated manganese oxides. The increase in temperature and time of synthesis, as well as the application of K+, Na+, Ca2+, and Mg2+ ions as templates led to the decrease of sorption capacity down to 40–60 mg g−1 and 60–80 mg g−1, respectively. The highest sorption efficiency of metal ion-templated manganese oxides in Na+, K+, and Ca2+-form was shown for 90Sr, its Kd being (3.8–5.1) × 103 cm3 g−1. For Na+ ion-templated sample, as typical, the Kd values were 2.0 × 10−1–8.6 × 104 cm3 g−1 in the pH range of 0.5–12.0 and 3.5 × 102–6.2 × 101 cm3 g−1 for Ca2+ ion concentration varied from 10 to 80 mM, respectively.

Keywords

Nanostructured materials Sol–gel processes Crystal structure Thermal analysis 

Notes

Acknowledgements

Funding was provided by the state program of scientific research (Grant No. 1.05).

References

  1. 1.
    Singh NB, Nagpal G, Agrawal S, Rachna (2018) Water purification by using adsorbents—a review. Environ Technol Innov 11:187–240CrossRefGoogle Scholar
  2. 2.
    Osman KT (2018) Polluted soils. In: Management of soil problems. Springer, ChamGoogle Scholar
  3. 3.
    Höllriegl V, Louvat P, Werner E et al (2002) Studies of strontium biokinetics in humans. Radiat Environ Biophys 41:281–287PubMedGoogle Scholar
  4. 4.
    Fang X, Xu Zh, Ya Luo et al (2016) Removal of radionuclides from laundry wastewater containing organics and suspended solids using inorganic ion exchanger. Procedia Environ Sci 31:375–381CrossRefGoogle Scholar
  5. 5.
    Wu L, Cao J, Wu Z et al (2017) The mechanism of radioactive strontium removal from simulated radioactive wastewater via a coprecipitation microfiltration process. J Radioanal Nucl Chem 314:1973–1981CrossRefGoogle Scholar
  6. 6.
    Chu Zh, Liu J, Han Ch (2015) Removal of strontium ions from aqueous solution using hybrid membranes: kinetics and thermodynamics. Chin J Chem Eng 23(10):1620–1626CrossRefGoogle Scholar
  7. 7.
    Nishiyama Y, Hanafusa T, Yamashita J et al (2016) Adsorption and removal of strontium in aqueous solution by synthetic hydroxyapatite. J Radioanal Nucl Chem 307:1279–1285CrossRefPubMedGoogle Scholar
  8. 8.
    Milyutin VV, Nekrasova NA, Yanicheva NY et al (2017) Sorption of cesium and strontium radionuclides onto crystalline alkali metal titanosilicates. Radiochemistry 59:65–69CrossRefGoogle Scholar
  9. 9.
    Hong HJ, Kim B-G, Hong J et al (2017) Enhanced Sr adsorption performance of MnO2-alginate beads in seawater and evaluation of its mechanism. Chem Eng J 319:163–169CrossRefGoogle Scholar
  10. 10.
    Metwally SS, Ghaly M, El-Sherief EA (2017) Physicochemical properties of synthetic nano-birnessite and its enhanced scavenging of Co2+ and Sr2+ ions from aqueous solutions. Mater Chem Phys 193:63–72CrossRefGoogle Scholar
  11. 11.
    Pittet P-A, Bochud F, Froidevaux P (2019) Determination of 89Sr and 90Sr in fresh cow milk and raw urine using crystalline synthetic tunnel manganese oxides and layered metal sulfides. Anal Chim Acta 1047:267–274CrossRefPubMedGoogle Scholar
  12. 12.
    Wu MH, Shi J, Deng HP (2018) Metal doped manganese oxide octahedral molecular sieve catalysts for degradation of diclofenac in the presence of peroxymonosulfate. Arab J Chem 11(6):924–934CrossRefGoogle Scholar
  13. 13.
    Dyer A, Pillinger M, Newton J et al (2000) Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chem Mater 12:3798–3804CrossRefGoogle Scholar
  14. 14.
    Ivanets AI, Prozorovich VG, Kouznetsova TF et al (2018) Sorption behavior of 85Sr onto manganese oxides with tunnel structure. J Radioanal Nucl Chem 316:673–683CrossRefGoogle Scholar
  15. 15.
    Ivanets AI, Katsoshvili LL, Krivoshapkin PV et al (2017) Sorption of strontium ions onto mesoporous manganese oxide of OMS-2 type. Radiochemistry 59(3):264–271CrossRefGoogle Scholar
  16. 16.
    Ivanets AI, Prozorovich VG, Kouznetsova TF et al (2016) Mesoporous manganese oxides prepared by sol–gel method: synthesis, characterization and sorption properties towards strontium ions. Environ Nanotechnol Monit Manag 6:261–269Google Scholar
  17. 17.
    Hong X, Zhang G, Zhu Y, Yang H (2003) Sol–gel synthesis and characterization of mesoporous manganese oxide. Mater Res Bull 38(13):1695–1703CrossRefGoogle Scholar
  18. 18.
    Tang W, Shan X, Li Sh et al (2014) Sol–gel process for the synthesis of ultrafine MnO2 nanowires and nanorods. Mater Lett 132:317–321CrossRefGoogle Scholar
  19. 19.
    Hashemzadeh F, Mehdi Kashani Motlagh M, Maghsoudipour A (2009) A comparative study of hydrothermal and sol–gel methods in the synthesis of MnO2 nanostructures. J Sol-Gel Sci Technol 51:169–174CrossRefGoogle Scholar
  20. 20.
    Ganeshan S, Ramasundari P, Elangovan A (2017) Synthesis and characterization of MnO2 nanoparticles: study of structural and optical properties. Int J Sci Res Phys Appl Sci 5(6):5–8Google Scholar
  21. 21.
    Ivanets AI, Kuznetsova TF, Prozorovich VG (2015) Sol–gel synthesis and adsorption properties of mesoporous manganese oxide. Russ J Phys Chem 89:481–486CrossRefGoogle Scholar
  22. 22.
    Tran HN, You Sh-J, Hosseini-Bandegharaei A, Chao H-P (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116CrossRefPubMedGoogle Scholar
  23. 23.
    Abdelazez Mohamed Ahmed Kh, Abbood HA, Huang K (2012) Hydrothermal synthesis of Mn(OH)O nanowires and their thermal conversion to (1D)-manganese oxides nanostructures. J Cryst Growth 358:33–37CrossRefGoogle Scholar
  24. 24.
    Tian H, He J, Liu L et al (2012) Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde. Microporous Mesoporous Mater 151:397–402CrossRefGoogle Scholar
  25. 25.
    Shen X-M, Clearfield A (1986) Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxide. J Solid State Chem 64(3):270–282CrossRefGoogle Scholar
  26. 26.
    Feng Q, Miyai Y, Kanoh H, Ooi K (1992) Lithium (1 +) extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox-type and ion-exchange-type sites. Langmuir 8:1861–1867CrossRefGoogle Scholar
  27. 27.
    Kang L, Zhang M, Liu Z-H, Ooi K (2007) IR spectra of manganese oxides with either layered or tunnel structures. Spectrochim Acta Part A 67(3–4):864–869CrossRefGoogle Scholar
  28. 28.
    Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069CrossRefGoogle Scholar
  29. 29.
    Krivoshapkin PV, Ivanets AI, Torlopov MA et al (2019) Nanochitin/manganese oxide-biodegradable hybrid sorbent for heavy metal ions. Carbohydr Polym 210:135–143CrossRefPubMedGoogle Scholar
  30. 30.
    Abdel-Galil EA, Hassan RS, Eid MA (2019) Assessment of nano-sized stannic silicomolybdate for the removal of 137Cs, 90Sr and 141Ce radionuclides from radioactive waste solutions. Appl Radiat Isot 148:91–101CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang J, Chen L, Dai Xing et al (2019) Distinctive two-step intercalation of Sr2+ into a coordination polymer with record high 90Sr uptake capabilities. Chem 5(4):977–994CrossRefGoogle Scholar
  32. 32.
    Motlochová M, Slovák V, Pližingrová E et al (2019) The influence of annealing temperature on properties of TiO2 based materials as adsorbents of radionuclides. Thermochim Acta 673:34–39CrossRefGoogle Scholar
  33. 33.
    Bevara S, Giri P, Jahedkhan Patwe S et al (2018) Separation of 90Sr from nuclear waste by crystalline complex phosphates of Ce(IV) and Zr(IV). J Environ Chem Eng 6(2):2248–2261CrossRefGoogle Scholar
  34. 34.
    Bevara S, Giri P, Nagabhusan Achary S et al (2018) Synthetic Na/K-birnessite for efficient management of Sr(II) from nuclear waste. J Environ Chem Eng 6(6):7200–7213CrossRefGoogle Scholar
  35. 35.
    Cheng R, Kang M, Zhuang Sh et al (2019) Adsorption of Sr(II) from water by mercerized bacterial cellulose membrane modified with EDTA. J Hazard Mater 364:645–653CrossRefPubMedGoogle Scholar
  36. 36.
    Sofronov D, Krasnopyorova A, Efimova N et al (2019) Extraction of radionuclides of cerium, europium, cobalt and strontium with Mn3O4, MnO2, and MnOOH sorbents. Process Saf Environ Prot 125:157–163CrossRefGoogle Scholar
  37. 37.
    Egorin A, Sokolnitskaya T, Azarova Yu et al (2018) Investigation of Sr uptake by birnessite-type sorbents from seawater. J Radioanal Nucl Chem 317(1):243–251CrossRefGoogle Scholar
  38. 38.
    Essington ME (2004) Soil and water chemistry. An integrative approach. CRC Press LLC, Boca RatonCrossRefGoogle Scholar
  39. 39.
    Pshinko GN, Puzyrnaya LN, Shunkov VS et al (2016) 2016) Removal of cesium and strontium radionuclides from aqueous media by sorption onto magnetic potassium zinc hexacyanoferrate(II). Radiochemistry 58(5):491–497CrossRefGoogle Scholar
  40. 40.
    Kitikova NV, Ivanets AI, Shashkova IL et al (2017) Batch study of 85Sr adsorption from synthetic seawater solutions using phosphate sorbents. J Radioanal Nucl Chem 314(3):2437–2447CrossRefGoogle Scholar
  41. 41.
    Janusz W, Skwarek E (2016) Study of sorption processes of strontium on the synthetic hydroxyapatite. Adsorption 22:697–706CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of General and Inorganic Chemistry of the National Academy of Sciences of BelarusMinskBelarus
  2. 2.A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of SciencesMoscowRussia

Personalised recommendations