Advertisement

Use of the inorganic hexacyanoferrate sorbents for analysis of radiocesium in aqueous samples

  • Vladimir S. SemenishchevEmail author
  • Anna V. Voronina
  • Dharmendra K. Gupta
Article
  • 90 Downloads

Abstract

Application of two inorganic hexacyanoferrate sorbents (T-35 and NPF-HTD) for radiochemical analysis of 137Cs in various water samples was studied. The results of batch experiment for cesium sorption revealed that both sorbents are suitable for preconcentration of cesium at the pH range of 0.5–11. Column experiments revealed that the NPF-HTD sorbent provided significantly better cesium sorption than the T-35 sorbent due to better sorption kinetics. The sorbents were tested using 1 L of raw and acidified fresh water and seawater as well as 7.2 L water sample from Techa River (activity of 1.36 ± 0.21 Bq L−1 was found). 1.5 g of the NPF-HTD allowed for cesium recovery of 86–98.7% depending on type of water sample.

Keywords

Water analysis Cesium-137 Nickel hexacyanoferrate Sorption Techa River 

Notes

References

  1. 1.
    Cook MC, Stukel MJ, Zhang W, Mercier J-F, Cooke MW (2016) The determination of Fukushima-derived cesium-134 and cesium-137 in Japanese green tea samples and their distribution subsequent to simulated beverage preparation. J Environ Radioact 153:23–30CrossRefPubMedGoogle Scholar
  2. 2.
    Aoyama M (2018) Long-range transport of radiocaesium derived from global fallout and the Fukushima accident in the Pacific Ocean since 1953 through 2017—Part I: source term and surface transport. J Radioanal Nucl Chem 318:1519–1542CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Breier CF, Pike SM, Sebesta F, Tradd K, Breier JA, Buesseler KO (2016) New applications of KNiFC-PAN resin for broad scale monitoring of radiocesium following the Fukushima Dai-ichi nuclear disaster. J Radioanal Nucl Chem 307:2193–2200CrossRefGoogle Scholar
  4. 4.
    Gulin SB, Egorov VN, Duka MS, Sidorov IG, Proskurnin VYu, Mirzoyeva NYu, Bey ON, Gulina LV (2015) Deep-water profiling of 137Cs and 90Sr in the Black Sea: a further insight into dynamics of the post-Chernobyl radioactive contamination. J Radioanal Nucl Chem 304:779–783CrossRefGoogle Scholar
  5. 5.
    Daraoui A, Tosch L, Gorny M, Michel R, Goroncy I, Herrmann J, Nies H, Synal H-A, Alfimov V, Walther C (2016) Iodine-129, Iodine-127 and Cesium-137 in seawater from the North Sea and the Baltic Sea. J Environ Radioact 162–163:289–299CrossRefPubMedGoogle Scholar
  6. 6.
    Mahmood ZUW, Yii MO, Khalid MA, Yusof MAW, Mohamed N (2018) Marine radioactivity of Cs-134 and Cs-137 in the Malaysian Economic Exclusive Zone after the Fukushima accident. J Radioanal Nucl Chem 318:2165–2172CrossRefGoogle Scholar
  7. 7.
    Hirose K, Aoyama M, Sugimura Y (1990) Plutonium and cesium isotopes in river waters in Japan. J Radioanal Nucl Chem 141(1):191–202CrossRefGoogle Scholar
  8. 8.
    Povinec PP, Hirose K, Aoyama M (2013) Fukushima accident: radioactivity impact on the environment. Elsevier, AmsterdamCrossRefGoogle Scholar
  9. 9.
    Pike SM, Buesseler KO, Breier CF, Dulaiova H, Stastna K, Sebesta F (2013) Extraction of cesium in seawater off Japan using AMP-PAN resin and quantification via gamma spectroscopy and inductively coupled mass spectrometry. J Radioanal Nucl Chem 296(1):369–374CrossRefGoogle Scholar
  10. 10.
    Cao L, Zheng J, Tsukada H, Pan S, Wang Z, Tagami K, Uchida S (2016) Simultaneous determination of radiocesium (135Cs, 137Cs) and plutonium (239Pu, 240Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS. Talanta 159:55–63CrossRefPubMedGoogle Scholar
  11. 11.
    Aromaa H, Helariutta K, Ikonen J, Yli-Kaila M, Koskinen L, Siitari-Kauppi M (2018) Analysis of 3H, 36Cl, 133Ba, 134Cs and 22Na from synthetic granitic groundwater: an in situ through diffusion experiment at ONKALO. J Radioanal Nucl Chem 318:1161–1169CrossRefGoogle Scholar
  12. 12.
    Voronina AV, Betenekov ND, Semenishchev VS, Nedobukh TA (2015) Analysis of radionuclides in environmental samples. In: Walther C, Gupta DK (eds) Radionuclides in the environment. Influence of chemical speciation and plant uptake on radionuclide migration. Springer, Berlin, pp 231–253Google Scholar
  13. 13.
    Kumar SS, Sivaiah MV, Venkatesan KA, Krishna RM, Murthy GS, Sasidhar P (2003) Removal of cesium and strontium from acid solution using a composite of zirconium molybdate and zirconium tungstate. J Radioanal Nucl Chem 258(2):321–327CrossRefGoogle Scholar
  14. 14.
    El-Naggar IM, Zakaria ES, Ali IM, Khalil M, El-Shahat MF (2012) Chemical studies on polyaniline titanotungstate and its uses to reduction cesium from solutions and polluted milk. J Environ Radioact 112:108–117CrossRefPubMedGoogle Scholar
  15. 15.
    Shady SA (2009) Selectivity of cesium from fission radionuclides using resorcinol-formaldehyde and zirconyl-molybdopyrophosphate as ion-exchangers. J Hazard Mater 167:947–952CrossRefPubMedGoogle Scholar
  16. 16.
    Khanchi AR, Yavari R, Pourazarsa SK (2007) Preparation and evaluation of composite ion-exchanger for the removal of cesium and strontium radioisotopes. J Radioanal Nucl Chem 273(1):141–145CrossRefGoogle Scholar
  17. 17.
    Kamenik J, Dulaiova H, Sebesta F, Stastna K (2013) Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples. J Radioanal Nucl Chem 296(2):841–846CrossRefGoogle Scholar
  18. 18.
    Voronina AV, Blinova MO, Kulyaeva IO, Sanin PY, Semenishchev VS, Afonin YD (2015) Sorption of cesium radionuclides from aqueous solutions onto natural and modified aluminosilicates. Radiochemistry 57(5):446–452CrossRefGoogle Scholar
  19. 19.
    Gupta DK, Voronina AV, Semenishchev VS, Chatterjee S (2018) Green adsorbents for radioactive pollutants removal from natural water. In: Crini G, Lichtfouse E (eds) Green adsorbents for pollutant removal innovative materials. Springer, Berlin, pp 377–396. ISBN 978-3-319-92161-7CrossRefGoogle Scholar
  20. 20.
    Remez VP, Semenishchev VS, Voronina AV, Ioshin AA (2017) The Sorben-Tec system for rapid dosimetric evaluation of 137Cs in drinking water. J Radioanal Nucl Chem 311(1):135–140CrossRefGoogle Scholar
  21. 21.
    Sharygin LM, Muromsky AY, Kalyagina ML (2006) Structure and properties of a granulated inorganic ion exchanger selective for cesium. Sorpt Chromatogr Process 6(6):965–971 (in Russian) Google Scholar
  22. 22.
    Voronina AV, Semenishchev VS, Nogovitsyna EV, Betenekov ND (2012) A study of ferrocyanide sorbents on hydrated titanium dioxide support using physicochemical methods. Radiochemistry 54(1):69–74CrossRefGoogle Scholar
  23. 23.
    Millero FJ, Feistel R, Wright DG, McDougall TJ (2008) The composition of standard seawater and the definition of the reference-composition salinity scale. Deep-Sea Res Part I Oceanogr Res Pap 55(1):50–72CrossRefGoogle Scholar
  24. 24.
    Semenishchev VS, Ryabukhina VG, Voronina AV, Mashkovtsev MA, Nikiforov AF (2016) The study of selectivity of caesium sorption by a natural and surface-modified glauconite in presence of potassium and ammonium ions. J Radioanal Nucl Chem 309(2):583–588Google Scholar
  25. 25.
    Stepanets OV, Ligaev AN, Borisov AP, Travkina AV, Shkinev VM, Danilova TV, Miroshnikov AYu, Migunov VI (2009) Geoecological investigations of the Ob-Irtysh river basin in the Khanty–Mansi autonomous region: Yugra in 2006–2007. Geochem Int 47(7):657–671CrossRefGoogle Scholar
  26. 26.
    Voronina AV, Nogovinsyna EV (2015) Kinetic features of cesium sorption onto a polyfunctional ferrocyanide sorbent. Radiochemistry 57(1):79–86CrossRefGoogle Scholar
  27. 27.
    Sebesta F, Stefula V (1990) Composite ion exchanger with ammonium molybdophosphate and its properties. J Radioanal Nucl Chem 140(1):15–21CrossRefGoogle Scholar
  28. 28.
    Brewer KN, Todd TA, Wood DJ (1999) AMP-PAN column tests for the removal of Cs-137 from actual and simulated INEEL high-activity wastes. Czechoslov J Phys 49(1):959–964CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Vladimir S. Semenishchev
    • 1
    Email author
  • Anna V. Voronina
    • 1
  • Dharmendra K. Gupta
    • 2
  1. 1.Department of Radiochemistry and Applied EcologyUral Federal UniversityYekaterinburgRussia
  2. 2.Institut für Radioökologie und Strahlenschutz (IRS)Gottfried Wilhelm Leibniz Universität HannoverHannoverGermany

Personalised recommendations