Measurement of cross sections for the formation of 100gRh in natPd(p,x)100m,gRh reactions up to 42.61 MeV

  • Van Do Nguyen
  • Thanh Luan Nguyen
  • Thi Xuan Nguyen
  • Thi Hien Nguyen
  • Guinyun KimEmail author
  • Kwangsoo Kim


We measured the cross sections for the formation of the ground state nucleus 100gRh through natPd(p,x)100m,gRh reactions. The experiment was carried out using the stacked-foil activation technique in the energy range from threshold to 42.61 MeV. The cross section was determined on the basis of the measured activity of the corresponding residual nucleus using a high energy resolution HPGe γ-ray detector. The energy dependent flux of the proton beam was determined using the natCu(p,x)62Zn and natCu(p,x)65Zn monitoring reactions. In order to enhance the accuracy of the experimental results, the activity contributions from the decay of the 100mAg, 100gAg and 100Pd to 100gRh, which were also produced in the same palladium foil were corrected. The present experimental results are compared with the previously published data and with the theoretical predictions from the TENDL-2017 library.


natPd(p,x)100m,gRh reaction Stacked-foil technique Cross section TENDL-2017 library 



The authors express their sincere thanks to the staff of the MC-50 Cyclotron Laboratory in the Korea Institute of Radiological and Medical Sciences (KIRAMS), Korea for the excellent operation and their support during the experiment. This research was partly supported by the National Research Foundation of Korea through a grant provided by the Ministry of Science, ICT and Future Planning (NRF-2017R1D1A1B03030484, NRF-2018M7A1A1072274, and NRF-2018R1A6A1A06024970) and by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.04-2018.314.


  1. 1.
    Sudár S, Qaim SM (1996) Isomeric cross-section ratio for the formation of 58m,gCo in neutron, proton, deuteron, and alpha-particle induced reactions in the energy region up to 25 MeV. Phys Rev 53:2885–2892CrossRefGoogle Scholar
  2. 2.
    Qaim SM (2001) Nuclear data relevant to the production and application of diagnostic radionuclides. Radiochim Acta 89:223–232Google Scholar
  3. 3.
    Qaim SM, Tárkányi F, Obložinský P, Gul K, Hermanne A, Mustafa MG, Nortier FM, Scholten B, Shubin Yu, Takács S, Zhuang Y (2001) Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. IAEA-TECDOC-1211, Vienna
  4. 4.
    Birattari C, Gadioli E, Strini MG, Strini G, Tagliaferri G, Zetta L (1971) (p, xn) reactions induced in 169Tm, 181Ta and 209Bi with 20 to 45 MeV protons. Nuclear Phys A 166:605–623CrossRefGoogle Scholar
  5. 5.
    Ditrói F, Tárkányi F, Takács S, Hermanne A (2016) Activation cross-sections of proton induced reactions on vanadium in the 37–65 MeV energy range. Nucl Instr Methods B 381:16–28CrossRefGoogle Scholar
  6. 6.
    Rangacharyulu C, Fukuda M, Kanda H, Nishizaki S, Takahashi N (2017) Assessment of 43,44Sc isotope production in proton- and alpha-induced reactions. J Radioanal Nucl Chem 314:1967–1971CrossRefGoogle Scholar
  7. 7.
    Tárkányi F, Ditrói F, Takács S (2016) Activation cross sections of proton induced nuclear reactions on palladium up to 80 MeV. Appl Radiat Isot 114:128–144CrossRefPubMedGoogle Scholar
  8. 8.
    Khandaker MU, Kim KS, Kim GN, Otuka N (2010) Cyclotron production of the 105,106mAg, 100,101Pd, 100,101 m,105Rh radionuclides by natPd(p,x) nuclear processes. Nucl Instr Methods B 268:2303–2311CrossRefGoogle Scholar
  9. 9.
    Dogra R, Brett DA, Byrne AP, Mestnik-Filho J, Li Y, Ridgway MC (2006) Do palladium–dopant pairs exist in silicon. Phys B 376–377:245–248CrossRefGoogle Scholar
  10. 10.
    Potzger K, Bertschat HH, Burchard A, Forkel-Wirth D, Granzer H, Niehus H, Seeger S, Zeitz WD (1998) ISOLDE collaboration: correlation between local magnetic and structural properties at the Ni/Pd interface. Nucl Instr Methods B 146:618–623CrossRefGoogle Scholar
  11. 11.
    Johnston K, Schell J, Correia JG, Deicher M, Gunnlaugsson HP, Fenta AS, Bosne ED, Costa ARG, Lupascu DC (2017) The solidstate physics programme at ISOLDE: recent developments and perspectives. J Phys G: Nucl Part Phys 44:104001CrossRefGoogle Scholar
  12. 12.
    Khandaker MU, Meaze AKMMH, Kim KS, Son DC, Kim GN (2006) Measurements of the proton-induced reaction cross-sections of natMo by using the MC50 cyclotron at the Korean Institute of Radiological and Medical Sciences. J Korean Phys Soc 48:821–826Google Scholar
  13. 13.
    National Nuclear Data Center, Brookhaven National Laboratory, Nuclear structure and decay data (NuDat 2.7) (2017)
  14. 14.
    Singh B (2008) Nuclear data sheets for A = 100. Nucl Data Sheets 109:297–516CrossRefGoogle Scholar
  15. 15.
    Do NV, Khue PD, Thanh KT, Nam TH, Rahman MS, Kim KS, Lee MW, Kim GN, Lee HS, Cho MH, Ko IS, Namkung W (2011) Measurement of isomeric yield ratios for the 44 m, gSc isomeric pairs produced from 45Sc and natTi targets at 50-, 60-, and 70-MeV bremsstrahlung. J Radioanal Nucl Chem 287:813–820CrossRefGoogle Scholar
  16. 16.
    Dillmann I, Coquard L, Domingo-Pardo C, Käppeler F, Marganiec J, Uberseder E, Giesen U, Heiske A, Feinberg G, Hentschel D, Hilpp S (2011) Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the γ process. Phys Rev C 84:015802CrossRefGoogle Scholar
  17. 17.
    Cervenák J, Lebeda O (2016) Experimental cross-sections for proton-induced nuclear reactions on natMo. Nucl Instr Methods B 380:32–49CrossRefGoogle Scholar
  18. 18.
    Hubbell JH, Seltzer SM (2004) National Institute of Standards and Technology, NIST Standard Reference Database 126
  19. 19.
    Montgomery DM, Montgomery GA (1995) A method for assessing and correcting coincidence summing effects for germanium detector efficiency calibrations. J Radioanal Nucl Chem 193:71–79CrossRefGoogle Scholar
  20. 20.
    Piton F, Lépy MCh, Bé MM, Plagnard J (2000) Efficiency transfer and coincidence summing corrections for γ-ray spectrometry. Appl Radiat Isot 52:791–795CrossRefPubMedGoogle Scholar
  21. 21.
    Ziegler JF (2004) SRIM-2003. Nucl Inst Methods B 219–220:1027–1036CrossRefGoogle Scholar
  22. 22.
    Ziegler JF, Biersack JP, Littmark U (2003) SRIM 2003 code, Version 96.xx. The stopping and range of ions in solids. Pergamon, New York
  23. 23.
    Calculation of reaction Q-values and thresholds, Los Alamos National Laboratory, T-2 Nuclear Information Service
  24. 24.
    Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets 113:2841–2934CrossRefGoogle Scholar
  25. 25.
    Hayakawa HI, Hyman I, Lee JKP (1980) Decay of 100Ag. Phys Rev C 22:247–251CrossRefGoogle Scholar
  26. 26.
    Koning AJ, Rochman D, van der Marck SC, Kopecky J, Sublet JCh, Pomp S, Sjostrand H, Forrest R, Bauge E, Henriksson H, Cabellos O, Goriely S, Leppanen J, Leeb H, Plompen A, Mills R (2017) TENDL-2017, TALYS-based evaluated nuclear data library. Nucler Research and Consultancy Group (NRG), Petten
  27. 27.
    Koning AJ, Rochman D, Ch Sublet J, Dzysiuk N, Fleming M, van der Marck S (2019) TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl Data Sheets 155:1–55CrossRefGoogle Scholar
  28. 28.
    Ditrói F, Tárkányi F, Takács S, Mahunka I, Csikai J, Hermanne A, Uddin MS, Hagiwara M, Baba M, Ido T, Shubin Yu, Dityuk AI (2007) Measurement of activation cross sections of the proton induced nuclear reactions on palladium. J Radioanal Nucl Chem 272:231–235CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of Theoretical and Applied ResearchDuy Tan UniversityHanoiVietnam
  2. 2.Institute of PhysicsVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.Graduate School of Science and TechnologyVASTHanoiVietnam
  4. 4.Department of PhysicsKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations