Advertisement

Optimization of an isothermal gas-chromatographic setup for the chemical exploration of dubnium (Db, Z = 105) oxychlorides

  • Nadine M. ChieraEmail author
  • Tetsuya K. Sato
  • Tomohiro Tomitsuka
  • Masato Asai
  • Yuta Ito
  • Kaori Shirai
  • Hayato Suzuki
  • Katsuyuki Tokoi
  • Atsushi Toyoshima
  • Kazuaki Tsukada
  • Yuichiro Nagame
Article
  • 15 Downloads

Abstract

An isothermal gas-chromatographic (IGC) device has been developed and tested for on-line gas phase studies of volatile oxychlorides of short-lived group-5 transition metals. Radioisotopes of niobium and tantalum, produced in nuclear fusion evaporation reactions, are directly flushed into the IGC setup by an inert gas-jet. Oxychloride compounds are formed by the addition of SOCl2 and O2. Parameters influencing the formation and transport of NbOCl3 and TaOCl3 are discussed. For nuclides with half-lives (t1/2) of about 30 s, an overall efficiency of 7% is obtained, rendering the IGC setup suitable for the chemical exploration of 262Db (t1/2 = 34 s).

Keywords

Isothermal gas-chromatography Oxychlorides Niobium Tantalum Dubnium 

Notes

Acknowledgements

The authors express their gratitude to the crew of the JAEA Tandem accelerator for their assistance in the course of these experiments. The present work was partly supported by JSPS Kakenhi Grant-in-Aid for Young Scientists (B) (Grant No. 20740152).

References

  1. 1.
    Schädel M (2003) Chemistry of superheavy elements. Angew Chem Int Ed 45:368–401CrossRefGoogle Scholar
  2. 2.
    Türler A, Pershina V (2013) Advances in the production and chemistry of the heaviest elements. Chem Rev 113:1237–1312CrossRefGoogle Scholar
  3. 3.
    Thoennessen M (2013) Discovery of isotopes of elements with Z ≥ 100. Atom Data Nucl Data 99:312–344CrossRefGoogle Scholar
  4. 4.
    Türler A, Gregorich KE (2014) In: Schädel M, Shaughnessy D (eds) The chemistry of superheavy elements. Springer, Berlin, pp 261–308CrossRefGoogle Scholar
  5. 5.
    Gäggeler HW, Türler A (2014) In: Schädel M, Shaughnessy D (eds) The chemistry of superheavy elements. Springer, Berlin, pp 415–483CrossRefGoogle Scholar
  6. 6.
    Fricke B, Waber JT (1971) Theoretical predictions of the chemistry of superheavy elements. Actin Rev 1:433–485Google Scholar
  7. 7.
    Dolg M, Stoll H, Preuss H, Pitzer RM (1993) Relativistic and correlation effects for element 105 (hahnium, Ha): a comparative study of M and MO (M = Nb, Ta, Ha) using energy-adjusted ab initio pseudopotentials. J Phys Chem 97:5852–5859CrossRefGoogle Scholar
  8. 8.
    Studies of the heaviest elements at Dubna, Joint Institute for Nuclear Research Publications. https://inis.iaea.org/collection/NCLCollectionStore/_Public/06/179/6179997.pdf. Accessed 3 Jan 2019
  9. 9.
    Türler Α, Eichler B, Jost DT, Piguet D, Gäggeler HW, Gregorich KE, Sylwester E (1996) On-line gas phase chromatography with chlorides of niobium and hahnium (element 105). Radiochim Acta 73:55–66CrossRefGoogle Scholar
  10. 10.
    Kadkhodayan B On-line gas chromatographic studies of rutherfordium (element 104), hahnium (element 105), and homologs. Ph.D. thesis, Lawrence Berkeley Laboratory. https://cloudfront.escholarship.org/dist/prd/content/qt9x78j4n6/qt9x78j4n6.pdf?t=p0m7w8. Accessed 3 Jan 2019
  11. 11.
    Gäggeler HW, Jost DT, Kovacs J, Scherer UW, Weber A, Vermeulen D, Kadkhodayan B (1992) Gas phase chromatography experiments with bromides of tantalum and element 105. Radiochim Acta 57:93–100CrossRefGoogle Scholar
  12. 12.
    Qin Z, Lin MS, Fan FL, Huang WX, Yan XL, Bai J, Wu XL, Lei FA, Ding HJ, Ma F, Li GS, Zhou HB, Guo JS (2012) On-line gas chromatographic studies of Nb, Ta, and Db bromides. Radiochim Acta 100:285–289CrossRefGoogle Scholar
  13. 13.
    Türler A, Eichler R, Yakushev A (2015) Chemical studies of elements with \({\text{Z}} \geqslant 104\) in gas phase. Nucl Phys A 944:640–689CrossRefGoogle Scholar
  14. 14.
    Wollnik H (1976) Principles behind a He-jet system and its application for isotope separation. Nucl Instrum Methods 139:311–318CrossRefGoogle Scholar
  15. 15.
    Stender E, Trautmann N, Herrmann G (1980) Use of alkali halide clusters in a gas-jet recoil-transport system. Radiochem Radioanal Lett 42:291–296Google Scholar
  16. 16.
    Pershina V (2014) In: Schädel M, Shaughnessy D (eds) The chemistry of superheavy elements. Springer, Berlin, pp 135–239CrossRefGoogle Scholar
  17. 17.
    Tsalas S, Bächmann K (1978) Inorganic gas chromatography—the separation of volatile chlorides by thermochromatography combined with complex formation. Anal Chim Acta 98:17–24CrossRefGoogle Scholar
  18. 18.
    Rudolph J, Bachmann K (1979) Determination of adsorption enthalpies and entropies of inorganic halides by temperature-programmed gas chromatography. J Chromatogr A 178:459–469CrossRefGoogle Scholar
  19. 19.
    Nucleonica GmbH (2017) Nuclide datasheets, nucleonica nuclear science portal, version 3.0.65, Karlsruhe. https://www.nucleonica.com. Accessed 27 Mar 2019
  20. 20.
    Haba H, Huang M, Kaji D, Kanaya J, Kudou Y, Morimoto K, Morita K, Murakami M, Ozeki K, Sakai R, Sumita T (2014) Production of 262Db in the 248Cm(19F,5n)262Db reaction and decay properties of 262Db and 258Lr. Phys Rev C 89(024618):1–18Google Scholar
  21. 21.
    Zvára I (2008) In: Zvara I (ed) The inorganic radiochemistry of heavy elements: methods for studying gaseous compounds. Springer, Berlin, p 58CrossRefGoogle Scholar
  22. 22.
    Wilson IB (1947) The deposition of charged particles in tubes, with reference to the retention of therapeutic aerosols in the human lung. J Colloid Sci 2:271–276CrossRefGoogle Scholar
  23. 23.
    Hair ML, Hertl W (1973) Chlorination of silica surfaces. J Phys Chem 77:2070–2075CrossRefGoogle Scholar
  24. 24.
    McDaniel MP (1981) Surface halides of silica. 1. Chloride. J Phys Chem 85:532–537CrossRefGoogle Scholar
  25. 25.
    Chuburkov YuT, Seb HH, Alpert LK (1995) Entropy and enthalpy of adsorption of gaseous metal chlorides and oxychlorides on quartz glass as functions of adsorbate composition. Radiochemistry 37:528–536Google Scholar
  26. 26.
    Zvára I (2008) In: Zvara I (ed) The inorganic radiochemistry of heavy elements: methods for studying gaseous compounds. Springer, Berlin, p 156CrossRefGoogle Scholar
  27. 27.
    Pershina V, Anton J (2012) Theoretical predictions of properties and gas-phase chromatography behaviour of bromides of group-5 elements Nb, Ta, and element 105, Db. J Chem Phys 136:034308-1–034308-7Google Scholar
  28. 28.
    Pershina V, Sepp WD, Bastug T, Fricke B, Ionova GV (1992) Relativistic effects in physics and chemistry of element 105. III. Electronic structure of hahnium oxyhalides as analogs of group 5 elements oxyhalides. J Chem Phys 97:1123–1131CrossRefGoogle Scholar
  29. 29.
    Wollnik H, Wilhelm HG, Röbig G, Jungclas H (1975) The improvement of a gas-jet system by the use of an aerosol generator. Nucl Instrum Methods 127:539–545CrossRefGoogle Scholar
  30. 30.
    Nagame Y, Asai M, Haba H, Goto S, Tsukada K, Nishinaka I, Nishio K (2002) Production cross sections of 261Rf and 262Db in bombardments of 248Cm with 18O and 19F ions. J Nucl Radiochem Sci 3:85–88CrossRefGoogle Scholar
  31. 31.
    Mazumdar AK, Wagner H, Krömer G, Walcher W, Brügger M, Stender E, Trautmann N, Lund T (1980) The on-line isotope separation facility helios at the mainz reactor. Nucl Instr Methods 174:183–188CrossRefGoogle Scholar
  32. 32.
    Türler A, Gregorich KE (2014) In: Schädel M, Shaughnessy D (eds) The chemistry of superheavy elements. Springer, Berlin, p 272Google Scholar
  33. 33.
    Sato TK, Asai M, Sato N, Tsukada K, Toyoshima A, Ooe K, Miyashita S (2015) Development of a He/CdI2 gas-jet system coupled to a surface-ionization type ion-source in JAEA-ISOL: towards determination of the first ionization potential of Lr (Z = 103). J Radioanal Nucl Chem 303:1253–1257CrossRefGoogle Scholar
  34. 34.
    Sato N, Sato TK, Asai M, Toyoshima A, Tsukada K, Li ZJ, Nishio K (2014) Production of 256Lr in the 249,250,251Cf + 11B, 243Am + 18O, and 248Cm + 14N reactions. Radiochim Acta 102:211–219Google Scholar
  35. 35.
    Porstendörfer J (1968) Die experimentelle bestimmung der koeffizienten der anlagerung der neutralen und elektrisch geladenen radon-folgeprodukte an aerosole. Phys A Hadron Nucle Z 217:136–149CrossRefGoogle Scholar
  36. 36.
    Chang M, Kim S, Sioutas C (1999) Experimental studies on particle impaction and bounce: effects of substrate design and material. Atmos Environ 33:2313–2322CrossRefGoogle Scholar
  37. 37.
    Huang M, Haba H, Murakami M, Asai M, Kaji D, Kanaya J, Kasamatsu Y (2015) Production of 88Nb and 170Ta for chemical studies of element 105, Db, using the GARIS gas-jet system. J Radioanal Nucl Chem 304:845–849CrossRefGoogle Scholar
  38. 38.
    Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM—the stopping and range of ions in matter. Nucl Instrum Methods B 268:1818–1823CrossRefGoogle Scholar
  39. 39.
    Asai M, Sato TK, Private communicationGoogle Scholar
  40. 40.
    Freeman JH, Smith ML (1958) The preparation of anhydrous inorganic chlorides by dehydration with thionyl chloride. J Inorg Nucl Chem 7:224–227CrossRefGoogle Scholar
  41. 41.
    Sato TK, Tsukada K, Asai M, Toyoshima A, Li Z, Sato N, Nagame Y, Schädel M, Kasamatsu Y, Kikuchi T (2011) On-line isothermal gas chromatographic behavior of group-5 elements as homologues of Db (No. JAEA-Review-2011-040)Google Scholar
  42. 42.
    Zvára I (2008) In: Zvara I (ed) The inorganic radiochemistry of heavy elements: methods for studying gaseous compounds. Springer, Berlin, p 80CrossRefGoogle Scholar
  43. 43.
    Tsuda A, Henry FS, Butler JP (2013) Particle transport and deposition: basic physics of particle kinetics. Compr Physiol 3:1437–1471CrossRefGoogle Scholar
  44. 44.
    Schwyn S, Garwin E, Schmidt-Ott A (1988) Aerosol generator by spark discharge. J Aerosol Sci 19:639–642CrossRefGoogle Scholar
  45. 45.
    Hinds WC (2012) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New YorkGoogle Scholar
  46. 46.
    Characterization of the geometrical properties of agglomerated aerosol particles, Paul Scherrer Institute PSI-Bericht Nr. 129. https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/021/24021769.pdf. Accessed 3 Jan 2019
  47. 47.
    Wittwer D, Abdullin FS, Aksenov NV, Albin YV, Bozhikov GA, Dmitriev SN, Dressler R, Eichler R, Gäggeler HW, Henderson RA, Hübener S (2010) Gas phase chemical studies of superheavy elements using the Dubna gas-filled recoil separator—stopping range determination. Nucl Instrum Methods Phys Res B 268:28–35CrossRefGoogle Scholar
  48. 48.
    Found CG (1920) Ionization potentials of argon, nitrogen, carbon monoxide, helium, hydrogen and mercury and iodine vapors. Phys Rev 16:41–53CrossRefGoogle Scholar
  49. 49.
    Zvára I (2008) The inorganic radiochemistry of heavy elements: methods for studying gaseous compounds. Springer, BerlinCrossRefGoogle Scholar
  50. 50.
    Chiera NM, Sato TK, Tomitsuka T, Asai M, Suzuki H, Tokoi K, Toyoshima A, Tsukada K, Nagame Y (2018) Formation and thermochemical properties of oxychlorides of niobium (Nb) and tantalum (Ta): towards the gas-phase investigation of dubnium (Db) oxychloride. Inorg Chim Acta 486:361–366CrossRefGoogle Scholar
  51. 51.
    Knapas K, Rahtu A, Ritala M (2009) Etching of Nb2O5 thin films by NbCl5. Chem Vapor Depos 15:269–273Google Scholar
  52. 52.
    Aarik J, Kukli K, Aidla A, Pung L (1996) Mechanisms of suboxide growth and etching in atomic layer deposition of tantalum oxide from TaCl5 and H2O. Appl Surf Sci 103:331–341CrossRefGoogle Scholar
  53. 53.
    Eichler B, Türler A, Jost DT, Gäggeler HW (1994) Adsorption of volatile fission products on KCl aerosols. PSI condensed matter research and material sciences progress report 1993, Annex IIIA Annual Report, Villigen, p 75Google Scholar
  54. 54.
    Knacke O, Kubaschewski O, Hesselmann K (1991) Thermochemical properties of inorganic substances. Springer, BerlinGoogle Scholar
  55. 55.
    Gärtner M, Boettger M, Eichler B, Gäggeler HW, Grantz M, Hübener S, Jost DT (1997) On-line gas chromatography of Mo, W and U (oxy) chlorides. Radiochim Acta 78:59–68CrossRefGoogle Scholar
  56. 56.
    Eichler B, Türler A, Jost DT, Gäggeler HW (1994) OLGA III: a further step in the development of the on-line gas chemistry apparatus. PSI condensed matter research and material sciences progress report 1993, Annex IIIA annual report, Villigen, p 97Google Scholar
  57. 57.
    Rudolph J, Bächmann K (1976) Measurement of retention volume with a new continuous method using a parent–daughter system. Inorg Nucl Chem Lett 12:365–371CrossRefGoogle Scholar
  58. 58.
    Gäggeler H, Dornhöfer H, Schmidt-Ott WD, Greulich N, Eichler B (1985) Determination of adsorption enthalpies for polonium on surfaces of copper, silver, gold, palladium and platinum. Radiochim Acta 38:103–106CrossRefGoogle Scholar
  59. 59.
    Zvara I (1985) Simulation of thermochromatographic processes by the Monte Carlo method. Radiochim Acta 38:95–102CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Nadine M. Chiera
    • 1
    • 4
    Email author
  • Tetsuya K. Sato
    • 1
  • Tomohiro Tomitsuka
    • 1
    • 2
  • Masato Asai
    • 1
  • Yuta Ito
    • 1
  • Kaori Shirai
    • 2
  • Hayato Suzuki
    • 1
    • 3
  • Katsuyuki Tokoi
    • 1
    • 3
  • Atsushi Toyoshima
    • 1
  • Kazuaki Tsukada
    • 1
  • Yuichiro Nagame
    • 1
    • 3
  1. 1.Advanced Science Research CenterJapan Atomic Energy AgencyTokaiJapan
  2. 2.Graduate School of Science and TechnologyNiigata UniversityNiigataJapan
  3. 3.Graduate School of Science and EngineeringIbaraki UniversityMitoJapan
  4. 4.Laboratory of RadiochemistryPaul Scherrer InstituteVilligen PSISwitzerland

Personalised recommendations