Advertisement

A method for prompt in situ uranium assay and free acidity determination in uranyl nitrate solutions by density and Raman measurements

  • Andriy BerlizovEmail author
Article
  • 8 Downloads

Abstract

A combination of the density and Raman measurements for rapid in situ determination of uranium concentration and free acid molarity in uranyl nitrate solutions is proposed. Laboratory validation and field tests performed using a portable handheld density meter and a handheld Raman spectrometer demonstrated a feasibility of the approach in the range of uranium concentration from 50 to 426 g L−1, and free acid molarity ≤ 3 M. The combined standard uncertainties of the uranium and free acidity determination were found to be 2.4% and 5.7%, respectively. Potentials of the method in safeguards and process control applications are highlighted.

Keywords

Uranyl nitrate Aqueous solution Density measurement Raman spectrometry Uranium concentration Free acidity 

Notes

Acknowledgements

The author would like to gratefully acknowledge Mr Andreas Schachinger and Ms Rosanna Jungreithmair from the Nuclear Material Laboratory of the IAEA’s Safeguards Analytical Services in Seibersdorf for the assistance in preparation and characterization of reference solutions used in this study.

References

  1. 1.
    Loden L, Gilligan K (2013) Current and proposed process monitoring at uranium conversion facilities. Oak Ridge National Laboratory, ORNL/TM-2013/253Google Scholar
  2. 2.
    Advances in Uranium Refining and Conversion (1987) IAEA-TECDOC-420. International Atomic Energy Agency, ViennaGoogle Scholar
  3. 3.
    Uranium Extraction Technology (1993) Technical Reports Series No. 359. International Atomic Energy Agency, ViennaGoogle Scholar
  4. 4.
    De Bièvre P, Peiser H (1997) Basic equations and uncertainties in isotope-dilution mass spectrometry for traceability to SI of values obtained by this primary method. Fresenius J Anal Chem 359:523–525CrossRefGoogle Scholar
  5. 5.
    Vogl J, Pritzkow W (2010) Isotope dilution mass spectrometry: a primary method of measurement and its role for RM certification. MAPAN J Metrol Soc I 25(3):135–164Google Scholar
  6. 6.
    Gray W, Davies W (1964) A rapid and specific volumetric method for the precise determination of uranium. TRG Report 716(D), Bombay, IndiaGoogle Scholar
  7. 7.
    Safeguards Techniques and Equipment: 2011 Edition (2011) International nuclear verification series no. 1 (Rev. 2). International Atomic Energy Agency, ViennaGoogle Scholar
  8. 8.
    Canada T, Carpenter B (1979) Measurement technology for safeguards and materials control. NBS Special Publication, BoulderGoogle Scholar
  9. 9.
    Sprinkle J, Baxman H, Langner D, Canada T, Sampson T (1980) The in-plant evaluation of a uranium NDA system. In: Canada T, Carpenter B (eds) Measurement technology for safeguards and materials control. NBS Special Publication, BoulderGoogle Scholar
  10. 10.
    Ottmar H, Eberle H (1991) The hybrid K-edge/K-XRF densitometer: principles-design-performance. Report KfK 4590, Kernforschugszenturm Karlsruhe, GermanyGoogle Scholar
  11. 11.
    Mosley W, Thomson M, Reynolds L (1980) Evaluation of an LIII x-ray absorption-edge densitometer for assay of mixed uranium-plutonium solutions. In: Canada T, Carpenter B (eds) Measurement technology for safeguards and materials control. NBS Special Publication, BoulderGoogle Scholar
  12. 12.
    Brooks M, Russo P, Sprinkle J (1985) A compact L-edge densitometer for uranium concentration assay. Report LA-10306-MS, Los Alamos National Laboratory, USAGoogle Scholar
  13. 13.
    Erdmann N, Amador P, Arboré P, Eberle H, Lützenkirchen K, Ottmar H, Schorlé H, van Belle P, Lipcsei F, Schwalbach P, Gunnink R (2009) COMPUCEA: a high-performance analysis procedure for timely on-site uranium accountancy verification in LEU fuel fabrication plants. ESARDA Bull 43:30–39Google Scholar
  14. 14.
    Berlizov A, Schachinger A, Roetsch K, Erdmann N, Schorlé H, Vargas M, Zsigrai J, Kulko A, Keselica M, Cailou F, Unsal V, Walczak-Typke A (2016) Feedback from operational experience of on-site deployment of bias defect analysis with COMPUCEA. J Radioannal Nucl Chem 307(4):1901–1909CrossRefGoogle Scholar
  15. 15.
    Kierzek J, Parus J (1975) Rapid method of uranium determination in solutions based on X-ray fluorescence and absorption. J Radioannal Nucl Chem 24:73–84CrossRefGoogle Scholar
  16. 16.
    Camp D, Ruhter W (1980) Nondestructive, energy-dispersive, x-ray fluorescence analysis of product stream concentrations from reprocessed nuclear fuels. In: Canada T, Carpenter B (eds) Measurement technology for safeguards and materials control. NBS Special Publication, BoulderGoogle Scholar
  17. 17.
    Berdikov V, lxGrigor’ev O, Iokhin B (1982) X-ray fluorescence determination of uranium and neighbouring elements in solution. J Radioannal Nucl Chem 68:181–192CrossRefGoogle Scholar
  18. 18.
    Martinelli P, Boutaine J, Gousseau G, Tanguy J, Tellechea C (1986) Determination of uranium and/or plutonium using X-ray fluorescence analysis excited by 192Ir sealed sources. Nucl Instrum Methods Phys Res A 242(3):569–573CrossRefGoogle Scholar
  19. 19.
    Dubrovka S, Chursin S, Verkhoturova V (2017) X-ray fluorescence-based method for the quantitative determination of uranium in the aqueous solutions. J Phys Conf Ser 781:012015CrossRefGoogle Scholar
  20. 20.
    Khorfan A, Wahoud A, Rafool W (2003) A quick method to determine uranium concentration by gamma spectroscopy: its application for extraction of uranium from wet phosphoric acid. J Radioannal Nucl Chem 257:313–316CrossRefGoogle Scholar
  21. 21.
    Dewji S, Chapman J, Lee D, Rauch E, Hertel N (2012) Detector validation and source term analysis of uranyl nitrate to detect diversion at natural uranium conversion cacilities. In: Proceedings of 53rd INMM annual meeting, Orlando, USAGoogle Scholar
  22. 22.
    Prohaska C (1957) A flow colorimeter for measuring uranium concentrations in process streams. DP-229Google Scholar
  23. 23.
    Landry J (1960) In-line instrumentation gamma monitor, uranium colorimeter. Oak Ridge National Laboratory, ORNL-2978Google Scholar
  24. 24.
    Scott F, Dirks R (1960) Photometer for continuous determination of uranium in radioactive process streams. Anal Chem 32:268–272CrossRefGoogle Scholar
  25. 25.
    Bhargava V, Chandrasekharan E, Iyer R, Rao V, Ramaniah M, Srinivasan (1970) In-line analytical methods for fuel reprocessing streams-Part I. Direct calorimetry for uranium and free acid. Bhanha Atomic Reserach Centre, B.A.R.C.-510, Bombay, IndiaGoogle Scholar
  26. 26.
    Bostick D (1980) Acid-compensated multiwavelength determination of uranium in process streams. In: Canada T, Carpenter B (eds) Measurement technology for safeguards and materials control. NBS Special Publication, BoulderGoogle Scholar
  27. 27.
    Smith N, Cerefice G, Czerwinski K (2013) Fluorescence and absorbance spectroscopy of the uranyl ion in nitric acid for process monitoring applications. J Radioanal Nucl Chem 295:1553–1560CrossRefGoogle Scholar
  28. 28.
    Srinivasan T, Vasudeva Rao R (2014) Free acidity measurement: a review. Talanta 118:162–171CrossRefGoogle Scholar
  29. 29.
    Nair B, Shanmugavelu P, Sudhakar T, Suchintya S (2009) Determination of uranium concentration and free acid in uranyl nitrate solutions by two-end point pH titration. Explor Res At Miner 19:44–47Google Scholar
  30. 30.
    Botts J, Raridon R, Costanzo D (1978) Density, acidity, and conductivity measurements of uranyl nitrate/nitric acid solutions. Oak Ridge National Laboratory, ORNL/TM-6491Google Scholar
  31. 31.
    Berlizov A, Ho Mer Lin D, Nicholl A, Fanghänel Th, Mayer K (2016) Assessing hand-held Raman spectrometer FirstDefender RM for nuclear safeguards applications. J Radioannal Nucl Chem 307(1):285–295CrossRefGoogle Scholar
  32. 32.
    Sakurai S, Tachimori S (1996) Density equation of aqueous solution containing plutonium (IV), uranium (VI) and nitric acid. J Nucl Sci Technol 33(2):187–189CrossRefGoogle Scholar
  33. 33.
    Ikeda-Ohno A, Hennig C, Tsushima S, Scheinost A, Bernhard G, Yaita T (2009) Speciation and structural study of U(IV) and -(VI) in perchloric and nitric acid solutions. Inorg Chem 48(15):7201–7210CrossRefGoogle Scholar
  34. 34.
    Certified Nuclear Reference Materia No. 106. Uranium dioxide (sintered pellets). Certification of Analysis (1984) Commission of the European Communities. Joint Research Centre, Geel Establishmenet (CBNM)Google Scholar
  35. 35.
    SpectraLine 1.6. User’s Manual (2017) Laboratory of spectrometry and radiometry. LSRM Ltd., ZelenogradGoogle Scholar
  36. 36.
    Advances in Uranium Refining and Conversion (1986) IAEA-TECDOC-420. International Atomic Energy Agency, ViennaGoogle Scholar
  37. 37.
    Zhao K, Penkin M, Norman C, Balsley S (2010) International target values 2010 for measurement uncertainties in safeguarding nuclear materials. STR-368, International Atomic Energy Agency, ViennaGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of SafeguardsInternational Atomic Energy AgencyViennaAustria

Personalised recommendations