Advertisement

Waste cigarette filters: activated carbon as a novel sorbent for uranium removal

  • Dongdong Pu
  • Ying Kou
  • Ling Zhang
  • Bo Liu
  • Wenkun Zhu
  • Lin Zhu
  • Tao DuanEmail author
Article
  • 46 Downloads

Abstract

Uranium is important in the nuclear fuel cycle as both as an energy source and as radioactive waste. Herein, activated carbon (AC) prepared from waste cigarette filters by convenient carbonization and functionalization was chosen as the raw materials for radionuclides adsorption. Batch adsorption experiments showed that AC presented comparable UO22+ adsorption capacity (106 mg g−1) and very outstanding selectivity. The adsorption process accorded with Langmuir model and the pseudo-second-order kinetics model well. This work combines the waste cigarette filters with the radioactive nuclear treatment materials, which may provide a new strategy for the future treatment of waste cigarette butts.

Keywords

Cigarette filter Activated carbon Uranium Sorption 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21671160, 21601147); the National Key Research and Development Project (2016YFC1402502); the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (18zxhk04); the Long Shan Talent Project (17LZX306, 17LZXT04).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10967_2019_6502_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 26 kb)

References

  1. 1.
    Brook BW, Alonso A, Meneley DA et al (2014) Why nuclear energy is sustainable and has to be part of the energy mix. Sustain Mater technol 2:8–16Google Scholar
  2. 2.
    Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510CrossRefGoogle Scholar
  3. 3.
    Brumfiel G (2011) Fukushima set for epic clean-up. Nature 472:146–147CrossRefGoogle Scholar
  4. 4.
    Anspaugh LR, Catlin RJ, Goldman M (1988) The global impact of the Chernobyl reactor accident. Science 242:1513–1519CrossRefGoogle Scholar
  5. 5.
    Nichols KP, Pompano RR, Li L, Gelis AV, Ismagilov RF (2011) Toward mechanistic understanding of nuclear reprocessing chemistries by quantifying lanthanide solvent extraction kinetics via microfluidics with constant interfacial area and rapid mixing. J Am Chem Soc 133:15721–15729CrossRefGoogle Scholar
  6. 6.
    Gu BH, Ku YK, Jardine PM (2004) Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin. Environ Sci Technol 38:3184–3188CrossRefGoogle Scholar
  7. 7.
    Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2002) Radionuclide contamination: nanometre-size products of uranium bioreduction. Nature 419:134–134CrossRefGoogle Scholar
  8. 8.
    Liu YL, Ye GA, Yuan LY, Liu K, Feng YX, Li ZJ, Chai ZF, Shi WQ (2015) Electroseparation of thorium from ThO2 and La2O3 by forming Th–Al alloys in LiCl–KCl Eutectic. Electrochim Acta 158:277–286CrossRefGoogle Scholar
  9. 9.
    Carboni M, Abney CW, Liu S, Lin W (2013) Highly porous and stable metal-organic frameworks for uranium extraction. Chem Sci 4:2396–2402CrossRefGoogle Scholar
  10. 10.
    Yang W, Bai ZQ, Shi WQ, Yuan LY, Tian T, Chai ZF, Wang H, Sun ZM (2013) MOF-76: from a luminescent probe to highly efficient U(VI) sorption material. Chem Commun 49:10415–10417CrossRefGoogle Scholar
  11. 11.
    Bai ZQ, Yuan LY, Zhu L, Liu ZR, Chu SQ, Zheng LR et al (2014) Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. J Mater Chem A 3:525–534CrossRefGoogle Scholar
  12. 12.
    Luo BC, Yuan LY, Chai ZF, Shi WQ, Tang Q (2016) U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. J Radioanal Nucl Chem 307:269–276CrossRefGoogle Scholar
  13. 13.
    Min X, Yang W, Hui YF, Gao CY, Dang S, Sun ZM (2017) Fe3O4@ZIF-8: a magnetic nanocomposite for highly efficient (UO2)2+ adsorption and selective (UO2)2+/ln3+ separation. Chem Commun 53:4199CrossRefGoogle Scholar
  14. 14.
    Sheng DP, Zhu L, Dai X et al (2018) Successful decontamination of 99TcO4 in groundwater at legacy nuclear sites by a cationic metal-organic framework with hydrophobic pockets. Angew Chem Int Ed.  https://doi.org/10.1002/ange.201814640 Google Scholar
  15. 15.
    Huang S et al (2018) Unexpected ultrafast and high adsorption of U(VI) and Eu(III) from solution using porous Al2O3 microspheres derived from MIL-53. Chem Eng J 353:157–166CrossRefGoogle Scholar
  16. 16.
    Li X, Li Q, Ling H, Shen RP et al (2018) Sorption properties of U(VI) and Th(IV) on two-dimensional molybdenum disulfide (MoS2) nanosheets: effects of pH, ionic strength, contact time, humic acids and temperature. Environ Technol Innov 11:328–338CrossRefGoogle Scholar
  17. 17.
    Wang L, Tao W, Yuan L, Liu Z, Huang Q, Chai Z et al (2017) Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem Commun 53:12084–12087CrossRefGoogle Scholar
  18. 18.
    Wang L, Yuan L, Chen K, Zhang Y, Deng Q, Du S et al (2016) Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide mxene. ACS Appl Mater Interfaces 8:16396–16403CrossRefGoogle Scholar
  19. 19.
    Li Y, Li L, Chen T, Duan T, Yao W, Zheng K et al (2018) Bioassembly of fungal hypha/graphene oxide aerogel as high performance adsorbents for U(VI) removal. Chem Eng J 347:407–414CrossRefGoogle Scholar
  20. 20.
    Yang LF, Liu ZR, Yang Q, Liu DQ, Yi L (2018) Preparation of Fe-loaded activated carbon and its adsorption property to uranium ion in aqueous solution. J Radioanal Nucl Chem 317:1223–1233CrossRefGoogle Scholar
  21. 21.
    Zhang F, Zhang H, Chen R, Liu Q, Liu J, Wang C, Sun Z, Wang J (2018) Mussel-inspired antifouling magnetic activated carbon for uranium recovery from simulated seawater. J Colloid Interface Sci 534:172–182CrossRefGoogle Scholar
  22. 22.
    Ren XM, Chen CL, Nagatsu M, Wang XK (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410CrossRefGoogle Scholar
  23. 23.
    Li ZJ, Chen F, Yuan LY, Liu YL, Zhao YL, Chai ZF, Shi WQ (2012) Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546CrossRefGoogle Scholar
  24. 24.
    Sun YB, Yang SB, Chen Y, Ding CC, Cheng WC, Wang XK (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49:4255–4262CrossRefGoogle Scholar
  25. 25.
    Smith EA, Novotny TE (2011) Whose butt is it? Tobacco industry research about smokers and cigarette butt waste. Tob Control 20:i2–i8CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Troy SB, Mokaya R (2017) Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity. Energy Environ Sci 10:2552–2562CrossRefGoogle Scholar
  28. 28.
    Moerman JW, Potts GE (2011) Analysis of metals leached from smoked cigarette litter. Tob Control 20:i30CrossRefGoogle Scholar
  29. 29.
    Iskander FY, Bauer TL, Klein DE (1986) Determination of 28 elements in American cigarette tobacco by neutron-activation analysis. Analyst 111:107CrossRefGoogle Scholar
  30. 30.
    Bell P, Mulchi CL (1990) Relationships between soil pH, clay, organic matter and CEC and heavy metal concentrations in soils and tobacco. Tob Sci 34:32Google Scholar
  31. 31.
    Jauberty L, Drogat N, Decossas JL, Delpech V, Gloaguen V, Sol V (2013) Optimization of the arsenazo-III method for the determination of uranium in water and plant samples. Talanta 115:751–754CrossRefGoogle Scholar
  32. 32.
    Savvin SB (1961) Analytical use of arsenazo III: determination of thorium, zirconium, uranium and rare earth elements. Talanta 8:673–685CrossRefGoogle Scholar
  33. 33.
    Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169CrossRefGoogle Scholar
  34. 34.
    Norouzi S, Heidari M, Alipour V, Rahmanian O, Fazlzadeh M, Mohammadi-Moghadam F et al (2018) Preparation, characterization and Cr(VI) adsorption evaluation of naoh-activated carbon produced from date press cake; an agro-industrial waste. Bioresour Technol 258:48–56CrossRefGoogle Scholar
  35. 35.
    Peng H, Gao P, Chu G, Pan B, Peng J, Xing B (2017) Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environ Pollut 229:846–853CrossRefGoogle Scholar
  36. 36.
    Tao H, Ding S, Deng H (2016) Application of three surface complexation models on U(VI) adsorption onto graphene oxide. Chem Eng J 289:270–276CrossRefGoogle Scholar
  37. 37.
    Vidya K, Gupta NM, Selvam P (2004) Influence of pH on the sorption behaviour of uranyl ions in mesoporous MCM-41 and MCM-48 molecular sieves. Mater Res Bull 39:2035–2048CrossRefGoogle Scholar
  38. 38.
    Crookes-Goodson WJ, Slocik JM, Naik RR (2008) Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev 37:2403–2412CrossRefGoogle Scholar
  39. 39.
    Sun Y, Wu Z, Wang X, Ding C, Cheng W, Yu S, Wang X (2016) Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ Sci Technol 50:4459–4467CrossRefGoogle Scholar
  40. 40.
    Zou Y, Wang P, Yao W, Wang X, Liu Y, Yang D, Wang L, Hou J, Alsaedi A, Hayat T, Wang X (2017) Synergistic immobilization of UO2 2+ by novel graphitic carbon nitride@layered double hydroxide nanocomposites from wastewater. Chem Eng J 330:573–584CrossRefGoogle Scholar
  41. 41.
    Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Wu XL, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46CrossRefGoogle Scholar
  42. 42.
    Gao L, Yang ZQ, Shi KL, Wang XF, Guo ZJ, Wu WS (2010) U(VI) sorption on kaolinite: effects of pH, U(VI) concentration and oxyanions. J Radioanal Nucl Chem 284:519–526CrossRefGoogle Scholar
  43. 43.
    Fan FL, Ding HJ, Bai J, Wu XL, Lei F, Tian W, Wang Y, Qin Z (2011) Sorption of uranium(VI) from aqueous solution onto magnesium silicate hollow spheres. J Radioanal Nucl Chem 289:367–374CrossRefGoogle Scholar
  44. 44.
    Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X (2018) Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47:2322–2356CrossRefGoogle Scholar
  45. 45.
    Elma Š, Tidža M, Mirza N, Mustafa M (2018) Biosorption of uranium(VI) from aqueous solution by citrus limon peels: kinetics, equlibrium and batch studies. J Radioanal Nucl Chem.  https://doi.org/10.1007/s10967-018-6358-3 Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science and TechnologySouthwest University of Science and TechnologyMianyangChina
  2. 2.National Collaborative Innovation Center for Nuclear Waste and Environmental SafetySouthwest University of Science and TechnologyMianyangChina

Personalised recommendations