Advertisement

TL dating and XRF clay provenance analysis of ancient brick at Cuicul Roman city, Algeria

  • Fayçal KharfiEmail author
  • Lahcen Boudraa
  • Imene Benabdelghani
  • Mahfoud Bououden
Article
  • 15 Downloads

Abstract

In this work, a terra-cotta brick collected from the famous archaeological Roman city Cuicul, Algeria, was successfully dated by thermoluminescence. The provenance of the fabrication material was also identified by X-ray fluorescence analysis (XRF). The results obtained show that the brick was probably made in 198 A.D. This date is in good agreement with the history of the dated site and the neighborhood Caracalla arch edified in honour to Caracalla emperor (211–217 A.D.). The XRF study demonstrates that the raw clay used for the fabrication of the brick is local and well selected by the Roman builders.

Keywords

Cuicul Archaeological dating Thermoluminescence Material provenance X-ray fluorescence 

Notes

References

  1. 1.
    https://whc.unesco.org/fr/list/191. Accessed 19 March 2018
  2. 2.
    UNESCO (2000) Roman Art in Africa, World Heritage N°16Google Scholar
  3. 3.
    Akli Ikherbane M (2003) Le site archéologique de Djemila, l’antique Cuicul: Éventail d’actions possibles. Les Dossiers d’archéologie (Dijon) A286:26–31Google Scholar
  4. 4.
    Allais Y (1953) Le quartier à l’Est du Forum des Sévères. Revue Africaine XCVII:48–65Google Scholar
  5. 5.
    Allais Y (1971) Le quartier Occidental de Djemila (Cuicul). Antiquités Africaines 5:95–119CrossRefGoogle Scholar
  6. 6.
    Aitken MJ (1970) Dating by archaeomagnetic and thermoluminescent methods. Philos Trans R Soc Lond Ser A 269(1193):77–88CrossRefGoogle Scholar
  7. 7.
    Zimmerman DW, Huxtable J (1969) Recent applications and developments in thermoluminescent dating. Archaeometry 11:105–108CrossRefGoogle Scholar
  8. 8.
    Veronese I, Goksu HY, Schwenk P, Herzig F (2008) Thermoluminescence dating of a mikveh in Ichenhausen, Germany. J Environ Radioact 99:621–630CrossRefGoogle Scholar
  9. 9.
    Kondopoulou D, Aidona E, Ioannidis N, Polymeris GS, Tsolakis S (2015) Archaeomagnetic study and thermoluminescence dating of Protobyzantine kilns (Megali Kypsa, North Greece). J Archaeol Sci Rep 2:156–168Google Scholar
  10. 10.
    Yeea KP, Mob RH (2018) Thermoluminescence dating of stalactitic calcite from the early Palaeolithic occupation at Tongamdong site. J Archaeol Sci Rep 19:405–410Google Scholar
  11. 11.
    Sears DWG, Sears H, Sehlke A, Hughes SS (2018) Induced thermoluminescence as a method for dating recent volcanism: Hawaii County, Hawaii, USA. J Volcanol Geoth Res 349:74–82CrossRefGoogle Scholar
  12. 12.
    Sabtu SN (2015) Thermoluminescence dating analysis at the site of an ancient brick structure at Pengkalan Bujang, Malaysia. Appl Radiat Isot 105:182–187CrossRefGoogle Scholar
  13. 13.
    Temaa E, Polymerisc G, Moralesd J, Goguitchaichvilid A, Tsaknakie V (2015) Dating of ancient kilns: a combined archaeomagnetic and thermoluminescence analysis applied to a brick workshop at Kato Achaia, Greece. J Cult Herit 16:496–507CrossRefGoogle Scholar
  14. 14.
    Sanzelle S, Miallier D, Pilleyre T, Faïn J, Montret M (1996) A new slide technique for regressing TL/ESR dose response curves. Radiat Meas 26:631–638CrossRefGoogle Scholar
  15. 15.
    Aitken MJ (1974) Physics and archaeology. Clarendon Press, Oxford, pp 26–84Google Scholar
  16. 16.
    Zimmerman DW (1971) Thermoluminescent dating using fine grains from pottery. Archaeometry 13:29–52CrossRefGoogle Scholar
  17. 17.
    Jain M, Booetten-Jensen L, Singhvi AK (2003) Dose evaluation using multiple aliquot quartz OSL: test of methods and new protocol for improved accuracy and precision. Radiat Meas 37:67–80CrossRefGoogle Scholar
  18. 18.
    Richter D (2007) Advantages and limitations of thermoluminescence dating of heated flint from paleolithic sites. Geoarchaeology 22(6):671–683CrossRefGoogle Scholar
  19. 19.
    Felix C, Singhvi AK (1997) Study of non-linear luminescence-dose growth curves for the estimation of paleodose in luminescence dating: results of Monte Carlo simulations. Radiat Meas 27:599CrossRefGoogle Scholar
  20. 20.
    Fleming SJ (1970) Thermoluminescent dating: refinement of quartz inclusion method. Archaeometry 12(2):133–146CrossRefGoogle Scholar
  21. 21.
    Kharfi F, Ketfi R (2018) Irradiated black pepper identification based on thermoluminescence of silicate minerals. J Radioanal Nucl Chem 315:503–507CrossRefGoogle Scholar
  22. 22.
    Aitken MJ (1985) Thermoluminescence dating. Academic Press, LondonGoogle Scholar
  23. 23.
    Mejdahl V (1979) Thermoluminescence dating: beta dose attenuation in quartz grains. Archaeometry 21:61–72CrossRefGoogle Scholar
  24. 24.
    Mejdahl V (1987) Internal radioactivity in quartz and feldspar grains. Ancient TL 5(2):10–17Google Scholar
  25. 25.
    Pilleyre T(1991) Datation par thermoluminescence: application à la chronologie des retombées volcaniques. Thèse de doctorat de l’université Blaise Pascal—Clermont II, Clermont-Ferrand, FranceGoogle Scholar
  26. 26.
     Bassinet C (2007) Datation par luminescence : recherches méthodologiques et applications au volcanisme dans l’environnement de Laschamp. Thèse de doctorat de l’université Blaise Pascal- Clermont-Ferrand II, FrançeGoogle Scholar
  27. 27.
    Prescott JR, Hutton JT (1994) Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiat Meas 23:497–500CrossRefGoogle Scholar
  28. 28.
    Pilleyre T, Montret M, Fain J, Miallier D, Sanzelle S (1992) Attempts at dating ancient volcanoes using the red TL of quartz. Quat Sci Rev 11:13–17CrossRefGoogle Scholar
  29. 29.
    Leydier-Bareil AM (2006) Les arcs de triomphe dédiés à Caracalla en Afrique romaine. Doctorat histoire de l’art et archéologie, Université de Nancy 2, France. LN006/26-2 bisGoogle Scholar
  30. 30.
    Lourenço PB, Fernandes FM, Castro F (2010) Handmade clay bricks: chemical, physical and mechanical properties. Int J Archit Herit.  https://doi.org/10.1080/15583050902871092 Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Ferhat Abbas-Setif 1SetifAlgeria
  2. 2.Laboratory of Dosing, Analysis and Characterization with High Resolution (DAC)SetifAlgeria
  3. 3.Nuclear Research Centre of BirineBirineAlgeria
  4. 4.National Public Museum of SetifSetifAlgeria

Personalised recommendations