γ-Irradiated Ni-hesperidin nanocomposite for selective trace-level sensing of sulfide ions

  • Zarina Ansari
  • Tara Shankar Bhattacharya
  • Abhijit Saha
  • Kamalika SenEmail author


In this article we report an environment friendly synthesis of Ni-hesperidin nanocomposites (NiNC). The synthesized NiNC were characterized using analytical techniques like absorption spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential (ξ potential), infra red spectroscopy, powder X-ray diffractometry and Raman spectroscopy. The same NiNC when synthesized in presence of γ-irradiation (gNiNC) showed selective spectral sensing of obnoxious sulfide anion amongst a set of 5 different sulfur based anions. The linear range of detection was found to be 7–85 μM. The mechanism of sensing was investigated using IR and Raman spectral analysis.


Hesperidin Metal-complex γ-Irradiation Sulphide Raman spectroscopy 



One of the authors (ZA) express sincere thanks to CSIR (09/028(1022)/2018-EMR-I) for necessary funding. We thank Ms. Urmila Goswami, Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, India, for obtaining TEM images. We would also express our sincere thanks to Ms. Aparna Datta, UGC-DAE Consortium for Scientific Research, Kolkata, for obtaining DLS and zeta potential data. We are thankful to Mr. Nayan Ranjan Saha, Department of Polymer Science and Technology, University of Calcutta, India for measuring the XRD.


  1. 1.
    Ferro GY, Durrieu C (2016) Methods for evaluating the pollution impact of urban wet weather discharges on biocenosis: a review. Water Res 89:330–354CrossRefGoogle Scholar
  2. 2.
    Crutzen PJ, Wacławek S (2014) Atmospheric chemistry and climate in the anthropocene. Chem Didact Ecol Metrol 19:9–28CrossRefGoogle Scholar
  3. 3.
    Yang XF, Wang L, Xu H, Zhao M (2009) A fluorescein-based fluorogenic and chromogenic chemodosimeter for the sensitive detection of sulfide anion in aqueous solution. Anal Chim Acta 63:191–195Google Scholar
  4. 4.
    Dilgin Y, Kızılkaya B, Ertek B, Eren N, Dilgin DG (2012) Amperometric determination of sulfide based on its electrocatalytic oxidation at a pencil graphite electrode modified with quercetin. Talanta 89:490–495CrossRefGoogle Scholar
  5. 5.
    Prodromidis MI, Veltsistas PG, Karayannis MI (2000) Electrochemical study of chemically modified and screen-printed graphite electrodes with [SbVO (CHL)2] Hex. Application for the selective determination of sulfide. Anal Chem 72:3995–4002CrossRefGoogle Scholar
  6. 6.
    Hatamie A, Zargar B, Jalali A (2014) Copper nanoparticles: a new colorimetric probe for quick naked eye detection of sulphide ions in water samples. Talanta 121:234–238CrossRefGoogle Scholar
  7. 7.
    Lou X, Ou D, Li Q, Li Z (2012) An indirect approach for anion detection: the displacement strategy and its application. Chem Commun 48:8462–8477CrossRefGoogle Scholar
  8. 8.
    Choi MG, Cha S, Lee H, Jeon HL, Chang SK (2009) Sulfide selective chemosignalling by a Cu2+ complex of dipicolylamine appended fluorescein. Chem Commun 0:7390–7392Google Scholar
  9. 9.
    Fu Y, Feng QC, Jiang XJ, Xu H, Li M, Zang SQ (2014) New fluorescent sensors for Cu2+ and S2− in 100% aqueous solution based on displacement approach. Dalton Trans 43:5815–5822CrossRefGoogle Scholar
  10. 10.
    Ahmed KBA, Mariappan M, Veerappan A (2017) Nanosilver cotton swabs for highly sensitive and selective colorimetric detection of sulfide ions at nanomolar level. Sens Actuators B 244:831–836CrossRefGoogle Scholar
  11. 11.
    Kong S, Liao M, Gu Y, Li N, Wu P, Zhang T, He H (2016) Colorimetric recognition of pazufloxacin mesilate based on the aggregation of gold nanoparticles. Spectrochim Acta Part A 157:244–250CrossRefGoogle Scholar
  12. 12.
    Garg A, Garg S, Zaneveld LJ, Singla AK (2001) Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother Res 15:655–669CrossRefGoogle Scholar
  13. 13.
    Sarria ALF, Vilela AFL, Frugeri BM, Fernandes JB, Carlos RM, da Silva MF, Cass QB, Cardoso CL (2016) Copper (II) and zinc (II) complexes with flavanone derivatives: identification of potential cholinesterase inhibitors by on-flow assays. J Inorg Biochem 164:141–149CrossRefGoogle Scholar
  14. 14.
    Oliveira RMM, de Souza Daniel JF, de Aguiar I, Silva MFDGF, Fernandes JB, Carlos RM (2013) Structural effects on the hesperidin properties obtained by chelation to magnesium complexes. J Inorg Biochem 129:35–42CrossRefGoogle Scholar
  15. 15.
    Oliveira RMM, de Souza Daniel JF, Carlos RM (2013) Synthesis spectroscopic characterization and biological activity of cis-[Ru(hesperidin)(1,100-phenanthroline)2](PF6) complex. J Mol Struct 1031:269–274CrossRefGoogle Scholar
  16. 16.
    Sahu N, Soni D, Chandrashekhar B, Satpute DB, Saravanadevi S, Sarangi BK, Pandey RA (2016) Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int Nano Lett. Google Scholar
  17. 17.
    Naik PP, Tangsali RB, Meena SS, Bhatt P, Sonaye B, Sugur S (2014) Gamma radiation roused lattice contraction effects investigated by Mössbauer spectroscopy in nanoparticle Mn–Zn ferrite. Radiat Phys Chem 102:147–152CrossRefGoogle Scholar
  18. 18.
    Panhwar QK, Memon S (2014) Synthesis of Cr(III)-morin complex: characterization and antioxidant study. Sci World J. Google Scholar
  19. 19.
    Hall DS, Lockwood DJ, Poirier S, Bock C, MacDougall BR (2012) Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel. J Phys Chem A 116:6771–6784CrossRefGoogle Scholar
  20. 20.
    Ficarra R, Tommasini S, Raneri D, Calabro ML, Di Bella MR, Rustichelli C, Gamberini MC, Ficarra P (2002) Study of flavonoids/β-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation. J Pharm Biomed Anal 29:1005–1014CrossRefGoogle Scholar
  21. 21.
    El-Kemary M, Nagy N, El-Mehasseb I (2013) Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process 6:1747–1752CrossRefGoogle Scholar
  22. 22.
    Muruganandham M, Amutha R, Sillanpaa M (2010) Reagents for ZnS hierarchical and non-hierarchical porous self-assembly. ACS Appl Mater Interfaces 2:1817–1823CrossRefGoogle Scholar
  23. 23.
    Inoue T, Yoshinaga A, Takabe K, Yoshioka T, Ogawa K, Sakamoto M, Azuma J, Honda Y (2015) In situ detection and identification of hesperidin crystals in satsuma mandarin (Citrus unshiu) peel cells. Phytochem Anal 26:105–110CrossRefGoogle Scholar
  24. 24.
    Gao Y, Yin P (2017) Origin of asymmetric broadening of Raman peak profiles in Si nanocrystals. Sci Rep 7:43602–43605CrossRefGoogle Scholar
  25. 25.
    Vito L, Minniti Z, Lorusso S (2011) Ancient and modern paper characterization by FTIR and Micro-Raman spectroscopy. Conserv Sci Cult Herit 11:249–268Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalcuttaKolkataIndia
  2. 2.Department of PhysicsBose InstituteKolkataIndia
  3. 3.UGC-DAE Consortium for Scientific Research, Kolkata CentreKolkataIndia

Personalised recommendations