Advertisement

Aspects of quality assurance and performance of strontium-selective resins under non-routine conditions: old resins, delayed elution

  • Anica Weller
  • Rebecca Querfeld
  • Fabian Köhler
  • Georg SteinhauserEmail author
Article
  • 23 Downloads

Abstract

The use of commercially available strontium-selective resins has been established for strontium isolation and the analysis of radiostrontium. The resins show no significant aging effects (during storage under different temperatures) and even long-time storage under highly acidic conditions yields a similar performance to new resin columns. The reuse of the SR Resin after storage under acidic conditions and the complexing agent oxalic acid showed detrimental effects. Lastly, the reusability of the resins is limited due to a residual 0.5% of the initial radiostrontium activity on the column, even after multiple pure water elutions. The impact of the radiotracer 85Sr on low-level LSC measurements of 90Sr was tested.

Keywords

Quality assurance SR Resin Shelf-life Radiostrontium Extraction performance Sr recovery 

Notes

Acknowledgements

A.W. gratefully acknowledges financial support by the Deutsche Bundesstiftung Umwelt (DBU) in the form of a Promotionsstipendium (No. 20017/484). F.K. thanks the Siebold-Sasse-Stiftung for financial support.

Supplementary material

10967_2019_6484_MOESM1_ESM.pdf (88 kb)
Supplementary material 1 (PDF 89 kb)

References

  1. 1.
    Magill J, Pfennig G, Dreher R et al (2015) Karlsruher Nuklidkarte, 9th edn. Nucleonica GmbH; Marktdienste Haberbeck GmbH, Eggenstein-LeopoldshafenGoogle Scholar
  2. 2.
    International Symposium on Environmental Impact of Radioactive Releases; Internationale Atomenergie-Organisation (1995) Environmental impact of radioactive releases: Proceedings on an International Symposium on Environmental Impact of Radioactive Releases organized by the International Atomic Energy Agency and held in Vienna, 8–12 May 1995. Proceedings series, ViennaGoogle Scholar
  3. 3.
    United Nations Scientific Committee on the Effects of Atomic Radiation (2011) Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation; UNSCEAR 2008 report to the General Assembly, with scientific annexes. United Nations, New YorkCrossRefGoogle Scholar
  4. 4.
    Jones S (2008) Windscale and Kyshtym: a double anniversary. J Environ Radioact 99(1):1–6.  https://doi.org/10.1016/j.jenvrad.2007.10.002 CrossRefGoogle Scholar
  5. 5.
    Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471:800–817.  https://doi.org/10.1016/j.scitotenv.2013.10.029 CrossRefGoogle Scholar
  6. 6.
    Povinec PP, Aoyama M, Biddulph D et al (2013) Cesium, iodine and tritium in NW Pacific waters—a comparison of the Fukushima impact with global fallout. Biogeosciences 10(8):5481–5496.  https://doi.org/10.5194/bg-10-5481-2013 CrossRefGoogle Scholar
  7. 7.
    Shagina NB, Tolstykh EI, Degteva MO et al (2015) Age and gender specific biokinetic model for strontium in humans. J Radiol Prot 35(1):87–127.  https://doi.org/10.1088/0952-4746/35/1/87 CrossRefGoogle Scholar
  8. 8.
    ICRP Publication 67 (1993) Age-dependent Doses to Members of the Public from Intake of Radionuclides—Part 2 Ingestion Dose Coefficients. ICRP 23(3–4)Google Scholar
  9. 9.
    Chiarizia R, Horwitz EP, Dietz ML (1992) Acid dependeny of the extraction of selected metal ions by a strontium selective extraction chromatographic resin: calculated versus experimental curves. Solvent Extr Ion Exch 10(2):337–361.  https://doi.org/10.1080/07366299208918108 CrossRefGoogle Scholar
  10. 10.
    Horwitz EP, Chiarizia R, Dietz ML (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10(2):313–336.  https://doi.org/10.1080/07366299208918107 CrossRefGoogle Scholar
  11. 11.
    Misawa K, Yamazaki F, Ihira N et al (2000) Separation of rare earth elements and strontium from chondritic meteorites by miniaturized extraction chromatography for elemental and isotopic analyses. Geochem J 34(1):11–21.  https://doi.org/10.2343/geochemj.34.11 CrossRefGoogle Scholar
  12. 12.
    Querfeld R, Schulz W, Neubohn J et al (2018) Anthropogenic radionuclides in water samples from the Chernobyl exclusion zone. J Radioanal Nucl Chem 318(1):423–428.  https://doi.org/10.1007/s10967-018-6030-y CrossRefGoogle Scholar
  13. 13.
    Steinhauser G, Schauer V, Shozugawa K (2013) Concentration of strontium-90 at selected hot spots in Japan. PLoS ONE 8(3):e57760.  https://doi.org/10.1371/journal.pone.0057760 CrossRefGoogle Scholar
  14. 14.
    Miura T, Minai Y (2017) Radiometric analysis of 90Sr in fish bone ash samples by liquid scintillation counting after separation by extraction chromatographic resin. J Radioanal Nucl Chem 313(2):343–351.  https://doi.org/10.1007/s10967-017-5319-6 CrossRefGoogle Scholar
  15. 15.
    Horwitz EP, Dietz ML, Chiarizia R (1992) The application of novel extraction chromatographic materials to the characterization of radioactive waste solutions. J Radioanal Nucl Chem 161(2):575–583.  https://doi.org/10.1007/BF02040504 CrossRefGoogle Scholar
  16. 16.
    Grate JW, Fadeff SK, Egorov O (1999) Separation-optimized sequential injection method for rapid automated analytical separation of 90Sr in nuclear waste. Analyst 124:203–210CrossRefGoogle Scholar
  17. 17.
    Groska J, Molnár Z, Bokori E et al (2012) Simultaneous determination of 89Sr and 90Sr: comparison of methods and calculation techniques. J Radioanal Nucl Chem 291(3):707–715.  https://doi.org/10.1007/s10967-011-1418-y CrossRefGoogle Scholar
  18. 18.
    Choi K-S, Lee CH, Im H-J et al (2017) Separation of 99Tc, 90Sr, 59,63Ni, 55Fe and 94Nb from activated carbon and stainless steel waste samples. J Radioanal Nucl Chem 314(3):2145–2154.  https://doi.org/10.1007/s10967-017-5566-6 CrossRefGoogle Scholar
  19. 19.
    Surrao A, Smith SW, Foerster E et al (2019) Improving the separation of strontium and barium with Sr Resin using chelating eluent solutions. J Radioanal Nucl Chem 319(3):1185–1192.  https://doi.org/10.1007/s10967-019-06432-w CrossRefGoogle Scholar
  20. 20.
    Steeb JL, Graczyk DG, Tsai Y et al (2013) Application of mass spectrometric isotope dilution methodology for 90Sr age-dating with measurements by thermal-ionization and inductively coupled-plasma mass spectrometry. J Anal At Spectrom 28(9):1493.  https://doi.org/10.1039/c3ja50136a CrossRefGoogle Scholar
  21. 21.
    Hawkins CA, Shkrob IA, Mertz CJ et al (2012) Novel tandem column method for the rapid isolation of radiostrontium from human urine. Anal Chim Acta 746:114–122.  https://doi.org/10.1016/j.aca.2012.08.007 CrossRefGoogle Scholar
  22. 22.
    McLain DR, Mertz CJ, Sudowe R (2016) A performance comparison of commercially available strontium extraction chromatography columns. J Radioanal Nucl Chem 307(3):1825–1831.  https://doi.org/10.1007/s10967-015-4634-z CrossRefGoogle Scholar
  23. 23.
    Maxwell SL (2008) Rapid analysis of emergency urine and water samples. J Radioanal Nucl Chem 275(3):497–502.  https://doi.org/10.1007/s10967-007-7084-4 CrossRefGoogle Scholar
  24. 24.
    Vereshchagin YI, Markovskii DV, Pavshuk VA et al (2006) 89Sr production in a reactor with solution fuel. At Energy 100(5):350–358.  https://doi.org/10.1007/s10512-006-0093-5 CrossRefGoogle Scholar
  25. 25.
    Park WJ, Han HS, Cho WK et al (1999) A study on the solvent extraction system for 89Sr production using 89Y(n,p)89Sr: proceedings of the Korean Nuclear Society spring meeting. https://inis.iaea.org/search/citationdownload.aspx. Accessed 15 Nov 2018
  26. 26.
    Dietz ML, Horwitz EP (1992) Improved chemistry for the production of yttrium-90 for medical applications. Appl Radiat Isot 43(9):1093–1101CrossRefGoogle Scholar
  27. 27.
    Retzmann A, Zimmermann T, Pröfrock D et al (2017) A fully automated simultaneous single-stage separation of Sr, Pb, and Nd using DGA Resin for the isotopic analysis of marine sediments. Anal Bioanal Chem 409(23):5463–5480.  https://doi.org/10.1007/s00216-017-0468-6 CrossRefGoogle Scholar
  28. 28.
    Swoboda S, Brunner M, Boulyga SF et al (2008) Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS. Anal Bioanal Chem 390(2):487–494.  https://doi.org/10.1007/s00216-007-1582-7 CrossRefGoogle Scholar
  29. 29.
    Vrecek P, Benedik L, Pihlar B (2004) Determination of 210Pb and 210Po in sediment and soil leachates and in biological materials using a Sr-resin column and evaluation of column reuse. Appl Radiat Isot 60(5):717–723.  https://doi.org/10.1016/j.apradiso.2003.11.088 CrossRefGoogle Scholar
  30. 30.
    Pan L-J, Yu G-B, Chen Z et al (2018) A modified sampling preparation method for rapid determination of Pb-210 radioactivity in plants in China using crown ether and liquid scintillation counting of beta particles. J Radioanal Nucl Chem 317(1):565–570.  https://doi.org/10.1007/s10967-018-5919-9 CrossRefGoogle Scholar
  31. 31.
    Dunne JA, Richards DA, Chen H-W (2017) Procedures for precise measurements of 135Cs/137Cs atom ratios in environmental samples at extreme dynamic ranges and ultra-trace levels by thermal ionization mass spectrometry. Talanta 174:347–356.  https://doi.org/10.1016/j.talanta.2017.06.033 CrossRefGoogle Scholar
  32. 32.
    Miura T, Minai Y, Yonezawa C et al (2018) Preparation and certification of certified reference materials of fish meat and ashed bone for determination of 90Sr and radiocesium after Fukushima Daiichi Nuclear Power Plant. J Radioanal Nucl Chem 318(1):347–352.  https://doi.org/10.1007/s10967-018-6028-5 CrossRefGoogle Scholar
  33. 33.
    Epimakhov VN, Moskvin LN, Pankina EB (2018) Complex radiochemical analysis of natural waters and nuclear power plant wastewaters. Specific features of the method for radiochemical determination of 90Sr. Radiochemistry 60(3):299–303.  https://doi.org/10.1134/S1066362218030128 CrossRefGoogle Scholar
  34. 34.
    Russell B, García-Miranda M, Ivanov P (2017) Development of an optimised method for analysis of 90Sr in decommissioning wastes by triple quadrupole inductively coupled plasma mass spectrometry. Appl Radiat Isot 126:35–39.  https://doi.org/10.1016/j.apradiso.2017.01.025 CrossRefGoogle Scholar
  35. 35.
    Kocadag M, Musilek A, Steinhauser G (2013) On the interference of 210Pb in the determination of 90Sr using a strontium specific resin. Nucl Technol Radiat Prot 28(2):163–168CrossRefGoogle Scholar
  36. 36.
    Steinhauser G, Niisoe T, Harada KH et al (2015) Post-accident sporadic releases of airborne radionuclides from the Fukushima Daiichi Nuclear Power Plant site. Environ Sci Technol 49(24):14028–14035.  https://doi.org/10.1021/acs.est.5b03155 CrossRefGoogle Scholar
  37. 37.
    Rosenberg BL, Ball JE, Shozugawa K et al (2017) Radionuclide pollution inside the Fukushima Daiichi exclusion zone, part 1: depth profiles of radiocesium and strontium-90 in soil. Appl Geochem 85:201–208.  https://doi.org/10.1016/j.apgeochem.2017.06.003 CrossRefGoogle Scholar
  38. 38.
    Weller A, Hori M, Shozugawa K et al (2018) Rapid ultra-trace determination of Fukushima-derived radionuclides in food. Food Control 85:376–384.  https://doi.org/10.1016/j.foodcont.2017.10.025 CrossRefGoogle Scholar
  39. 39.
    Landstetter C, Wallner G (2006) Determination of strontium-90 in deer bones by liquid scintillation spectrometry after separation on Sr-specific ion exchange columns. J Environ Radioact 87(3):315–324.  https://doi.org/10.1016/j.jenvrad.2005.12.008 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Leibniz Universität Hannover, Institute of Radioecology and Radiation ProtectionHannoverGermany

Personalised recommendations