Advertisement

U(VI) adsorption by biochar fiber–MnO2 composites

  • Katerina Ioannou
  • Pantelis Hadjiyiannis
  • Ioanna Liatsou
  • Ioannis PashalidisEmail author
Article
  • 13 Downloads

Abstract

The removal of U(VI) by biochar fibers from aqueous solutions has been investigated prior and after MnO2 surface-deposition. The removal efficiency has been studied as a function of pH, U(VI) concentration, ionic strength, temperature and contact time. The fibers morphology and surface complexes were analyzed by SEM–EDX and FTIR, respectively. Evaluation of the experimental data indicates that the composite presents extraordinary adsorption capacity (qmax = 3.8 mmol g−1, 904 mg g−1), which is attributed to the formation of inner-sphere surface complexes, and that the adsorption reaction is a relatively fast, endothermic and entropy-driven process.

Keywords

Uranium(VI) Adsorption MnO2–biochar fiber composites FTIR SEM 

Notes

Supplementary material

10967_2019_6479_MOESM1_ESM.doc (6.9 mb)
Supplementary material 1 (DOC 7100 kb)

References

  1. 1.
    Bhalara PD, Punetha D, Balasubramanian K (2014) A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. J Environ Chem Eng 2:1621–1634CrossRefGoogle Scholar
  2. 2.
    Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process—a review. Appl Biochem Biotechnol 170:1389–1416CrossRefGoogle Scholar
  3. 3.
    Prodromou M, Pashalidis I (2013) Uranium adsorption by non-treated and chemically modified cactus fibres in aqueous solutions. J Radioanal Nucl Chem 298:1587–1595CrossRefGoogle Scholar
  4. 4.
    Konstantinou M, Kolokassidou K, Pashalidis I (2007) Sorption of Cu(II) and Eu(III) ions from aqueous solution by olive cake. Adsorption 13:33–40CrossRefGoogle Scholar
  5. 5.
    Hadjittofi L, Pashalidis I (2015) Uranium sorption from aqueous solutions by activated biochar fibres investigated by FTIR spectroscopy and batch experiments. J Radioanal Nucl Chem 304:897–904CrossRefGoogle Scholar
  6. 6.
    Liatsou I, Michail G, Demetriou M, Pashalidis I (2017) Uranium binding by biochar fibres derived from Luffa cylindrica after controlled surface oxidation. J Radioanal Nucl Chem 311:871–875CrossRefGoogle Scholar
  7. 7.
    Liao W, Wang H, Li F, Zhao C, Liu J, Liao J, Yang J, Yang Y, Liu N (2018) MnO2-loaded microorganism-derived carbon for U(VI) adsorption from aqueous solution. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-018-3887-9 Google Scholar
  8. 8.
    Pan N, Li L, Ding J, Li S, Wang R, Jin Y, Wang X, Xia C (2016) Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI). J Hazard Mater 309:107–115CrossRefGoogle Scholar
  9. 9.
    Zhu J, Liu Q, Li Z, Liu J, Zhang H, Li R, Wang J, Emelchenko GA (2017) Recovery of uranium(VI) from aqueous solutions using a modified honeycomb-like porous carbon material. Dalton Trans 46(2):420–429CrossRefGoogle Scholar
  10. 10.
    Feidaki A, Symeopoulos BD, Prodromou M, Pashalidis I (2018) Studies on the separation of Ra(II), U(VI) and Eu(III) from aqueous solution using MnO2-resin. J Radioanal Nucl Chem 318:2189–2192CrossRefGoogle Scholar
  11. 11.
    Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285CrossRefGoogle Scholar
  12. 12.
    Mayanna S, Peacock CL, Franziska Schäffner F, Grawunder A, Merten D, Kothe E, Büchel G (2015) Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil. Chem Geol 402:6–17CrossRefGoogle Scholar
  13. 13.
    Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169CrossRefGoogle Scholar
  14. 14.
    Liatsou I, Pashalidis I, Oezaslan M, Dosche C (2017) Surface characterization of oxidized biochar fibers derived from Luffa cylindrica and lanthanide binding. J Environ Chem Eng 5:4069–4074CrossRefGoogle Scholar
  15. 15.
    Varga Z (2007) Preparation and characterization of manganese dioxide impregnated resin for radionuclide preconcentration. Appl Radiat Isotopes 65:1095–1100CrossRefGoogle Scholar
  16. 16.
    Prodromou M, Pashalidis I (2013) Copper(II) removal from aqueous solutions by adsorption on non-treated and chemically modified cactus fibres. Water Sci Technol 68:2497–2504CrossRefGoogle Scholar
  17. 17.
    Zhou L, Huang Y, Qiu W, Sun Z, Liu Z Song (2017) Adsorption properties of nano-MnO2–biochar composites for copper in aqueous solution. Molecules 22(1):173CrossRefGoogle Scholar
  18. 18.
    Manariotis ID, Fotopoulou KN, Karapanagioti HK (2015) Preparation and characterization of biochar sorbents produced from malt spent rootlets. Ind Eng Chem Res 54:9577–9584CrossRefGoogle Scholar
  19. 19.
    Huang M, Zhang Y, Li F, Zhang L, Ruoff RS, Wen Z, Liu Q (2014) Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors. Sci Rep 4(3878):1–8Google Scholar
  20. 20.
    Wang J-W, Chen Y, Chen B-Z (2015) A synthesis method of MnO2/activated carbon composite for electrochemical supercapacitors. J Electrochem Soc 162(8):1654–1661CrossRefGoogle Scholar
  21. 21.
    Pan N, Li L, Ding J, Li S, Wang R, Jin Y, Wang X, Xia C (2016) Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI). J Hazard Mater 309:107–115CrossRefGoogle Scholar
  22. 22.
    Liao W, Wang H, Li F, Zhao C, Liu J, Liao J, Yang J, Yang Y, Liu N (2018) MnO2-loaded microorganism-derived carbon for U(VI) adsorption from aqueous solution. Environ Sci Pollut Res 1:2.  https://doi.org/10.1007/s11356-018-3887-9 Google Scholar
  23. 23.
    Zhu J, Liu Q, Li Z, Liu J, Zhang H, Li R, Wang J, Emelchenko GA (2017) Recovery of uranium(VI) from aqueous solutions using a modified honeycomb-like porous carbon material. Dalton Trans 46(2):420–429CrossRefGoogle Scholar
  24. 24.
    El-Bayaa AA, Badawy NA, Al Khalik AE (2009) Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. J Hazard Mater 170:1204–1209CrossRefGoogle Scholar
  25. 25.
    Wang Z, Lee SW, Catalano JG, Lezama-Pacheco JS, Bargar JR, Tebo BM, Giammar DE (2013) Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling. Environ Sci Technol 47:850–858CrossRefGoogle Scholar
  26. 26.
    Philippou K, Savva I, Pashalidis I (2018) Uranium(VI) binding by pine needles prior and after chemical modification. J Radioanal Nucl Chem 318:2205–2211CrossRefGoogle Scholar
  27. 27.
    Liatsou I, Christodoulou E, Pashalidis I (2018) Thorium adsorption by oxidized biochar fibres derived from Luffa cylindrica sponges. J Radioanal Nucl Chem 318:1065–1070CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CyprusNicosiaCyprus

Personalised recommendations