Advertisement

Development of a simple spectrophotometric method to estimate uranium concentration in LiCl–KCl matrix

  • Satendra Kumar
  • S. Maji
  • K. Sundararajan
  • K. SankaranEmail author
Article

Abstract

A fast, precise and simple spectrophotometric method was developed for the estimation of uranium in LiCl–KCl salt matrix using phosphoric acid as a complexing agent. The 421 nm absorbance peak of uranium was found to be spectral interference free and area of this peak was used for the quantitative analysis. Linearity over 100–7000 ppm with a detection limit of 25 ppm of uranium in 10% LiCl–KCl matrix was obtained by this method. The present method was successfully applied for the quantitative estimation of uranium in synthetic salt mixtures and the results were found to be more accurate than the values measured by ICP-OES.

Keywords

Spectrophotometer Uranium LiCl–KCl Phosphoric acid Quantification 

Notes

Acknowledgements

The authors gratefully acknowledge the help of Mrs. S. Annapoorani, Materials Chemistry Division, IGCAR for ICP-OES analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10967_2019_6471_MOESM1_ESM.doc (54 kb)
Supplementary material 1 (DOC 53 kb)

References

  1. 1.
    Kamath HS (2011) Recycle fuel fabrication for closed fuel cycle in India. Energy Procedia 7:110–119CrossRefGoogle Scholar
  2. 2.
    Li SX, Johnson TA, Westphal BR, Goff KM., Bebedict RW (2005) Electrorefining experience for pyrochemical processing of spent EBR-II driver fuel. In: Proceedings of GLOBAL, p 487Google Scholar
  3. 3.
    Choi EY, Jeong SM (2015) Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology. Progr Nat Sci Mater Int 25:572–582CrossRefGoogle Scholar
  4. 4.
    Koyama T, Sakamura Y, Iizuka M, Kato T, Murakami T, Glatz J-P (2012) Development of pyro-processing fuel cycle technology for closing actinide cycle. Procedia Chem 7:772–778CrossRefGoogle Scholar
  5. 5.
    Nagarajan K, Reddy BP, Ghosh S, Ravisankar G, Mohandas KS, Mudali UK, Kutty KVG, Viswanathan KVK, Babu CA, Kalyanasundaram P, Rao PRV, Raj B (2011) Development of pyrochemical reprocessing for spent metal fuels. Energy Procedia 7:431–436CrossRefGoogle Scholar
  6. 6.
    Hundry D, Bardez I, Rakhmatullin A, Bessada C, Bart F, Jobic S, Deniard P (2008) Synthesis of rare earth phosphates in molten LiCl–KCl eutectic: application to preliminary treatment of chlorinated waste streams containing fission products. J Nucl Mater 381:284–289CrossRefGoogle Scholar
  7. 7.
    Cho YZ, Lee TK, Eun HC, Choi JH, Kim IT, Park GI (2013) Purification of used eutectic (LiCl–KCl) salt electrolyte from pyroprocessing. J Nucl Mater 437:47–54CrossRefGoogle Scholar
  8. 8.
    Eun HC, Kim JH, Cho YZ, Choi JH, Lee TK, Park HS, Park GI (2013) An optimal method for phosphorylation of rare earth chlorides in LiCl–KCl eutectic based waste salt. J Nucl Mater 442:175–178CrossRefGoogle Scholar
  9. 9.
    Amamoto I, Kofuji H, Myochin M, Takasaki Y, Terai T (2010) Precipitation behavior of fission products by phosphate conversion in LiCl–KCl medium. Nucl Technol 171:316–324CrossRefGoogle Scholar
  10. 10.
    Perumal SV, Reddy BP, Ravisankar G, Nagarajan K (2015) Actinides drawdown process for pyrochemical reprocessing of spent metal fuel. Radiochim Acta 103:287–292Google Scholar
  11. 11.
    Sengupta A, Adya VC, Godbole SV (2013) Spectral interference study of uranium on other analytes by using CCD based ICP-AES. J Radioanal Nucl Chem 298:1117–1125CrossRefGoogle Scholar
  12. 12.
    Rozmaric M, Ivsic AG, Grahek Z (2009) Determination of uranium and thorium in complex samples using chromatographic separation, ICP-MS and spectrophotometric detection. Talanta 80:352–362CrossRefGoogle Scholar
  13. 13.
    Park JH, Choi EJ (2016) Simultaneous determination of the quantity and isotopic ratios of uranium in individual micro-particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS). Talanta 160:600–606CrossRefGoogle Scholar
  14. 14.
    Ganeev A, Bogdanova O, Ivanov I, Burakov B, Agafonova N, Korotetski B, Gubal A, Solovyev N, Iakovleva E, Sillanp M (2015) Direct determination of uranium and thorium in minerals by time-of-flight mass spectrometry with pulsed glow discharge. RSC Adv 5:80901–80910CrossRefGoogle Scholar
  15. 15.
    Shinotsuka K, Ebihara M (1997) Precise determination of rare earth elements, thorium and uranium in chondritic meteorites by inductively coupled plasma mass spectrometry—a comparative study with radiochemical neutron activation analysis. Anal Chim Acta 338:237–246CrossRefGoogle Scholar
  16. 16.
    Dimovasilis PA, Prodromidis MI (2011) An electrochemical sensor for trace uranium determination based on 6-O-palmitoyl-l-ascorbic acid-modified graphite electrodes. Sensors Actuat B 156:689–694CrossRefGoogle Scholar
  17. 17.
    Sonali PDB, Ajay K, Priyanka JR, Rupali K, Rajesh VK, Rajvir S, Pradeepkumar KS (2016) Comparison of radiometric and non-radiometric methods for uranium determination in groundwater of Punjab, India. J Radioanal Nucl Chem 307:395–405CrossRefGoogle Scholar
  18. 18.
    Tuovinen H, Vesterbacka D, Pohjolainen E, Read D, Solatie D, Lehto J (2015) A comparison of analytical methods for determining uranium and thorium in ores and mill tailings. J Geochem Explor 148:174–180CrossRefGoogle Scholar
  19. 19.
    Benedik L, Vasile M, Spasova Y, Watjen U (2009) Sequential determination of 210Po and uranium radioisotopes in drinking water by alpha-particle spectrometry. Appl Radiat Isot 67:770–775CrossRefGoogle Scholar
  20. 20.
    Saidou Bochud F, Laedermann JP, Njock MGK, Froidevaux P (2008) A comparison of alpha and gamma spectrometry for environmental natural radioactivity surveys. Appl Radiat Isot 66:215–222CrossRefGoogle Scholar
  21. 21.
    Maji S, Kumar S, Sankaran K (2014) Fluorimetric estimation of U(VI) in the presence of a large excess of Th(IV). J Radio Nucl Chem 302:1277–1281CrossRefGoogle Scholar
  22. 22.
    Maji S, Kumar S, Sankaran K (2017) Luminescence of uranium ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium: observation of co-luminescence. Radiochim Acta 105:601–608CrossRefGoogle Scholar
  23. 23.
    Tarafder PK, Ghosh PK, Pradhan SK (2017) A novel approach for trace to percentage level determination of uranium in rocks, soils and stream sediments by laser induced fluorimetry. J Radioanal Nucl Chem 313:353–360CrossRefGoogle Scholar
  24. 24.
    Kumar SA, Shenoy NS, Pandey S, Sounderajan S, Venkateswaran G (2008) Direct determination of uranium in seawater by laser fluorimetry. Talanta 77:422–426CrossRefGoogle Scholar
  25. 25.
    Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169CrossRefGoogle Scholar
  26. 26.
    Bagda E, Tuzen M (2016) Determination of uranium in water samples with chromogenic reagent 4-(2-thiazolylazo) resorcinol after ionic liquid based dispersive liquid liquid microextraction. J Radioanal Nucl Chem 309:453–459Google Scholar
  27. 27.
    Niazi A, Khorshidi N, Ghaemmaghami P (2015) Microwave-assisted of dispersive liquid–liquid microextraction and spectrophotometric determination of uranium after optimization based on Box–Behnken design and chemometrics methods. Spectrochim Acta Part A Mol Biomol Spectrosc 135:69–75CrossRefGoogle Scholar
  28. 28.
    Souza AS, Siqueira RP, Prates RF, Bezerra VM, Rocha DDS, Oliveira MV, Santos DB (2017) A dispersive liquid–liquid microextraction based on solidification of floating organic drop and spectrophotometric determination of uranium in breast milk after optimization using Box–Behnken design. Microchem J 134:327–332CrossRefGoogle Scholar
  29. 29.
    Schroll CA, Lines AM, Heineman WR, Bryan SA (2016) Absorption spectroscopy for the quantitative prediction of lanthanide concentrations in the 3LiCl–2CsCl eutectic at 723 K. Anal Methods 8:7731–7738CrossRefGoogle Scholar
  30. 30.
    Servaes K, Hennig C, Billard I, Gaillard C, Binnemans K, Görller WC, Deun RV (2008) Speciation of uranium nitrato complexes in acetonitrile and in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Eur J Inorg Chem 2007:5120–5126CrossRefGoogle Scholar
  31. 31.
    Bell JT, Biggers RE (1965) The absorption spectrum of the uranium ion in perchlorate media. J Mol Spectrosc 18:247–275CrossRefGoogle Scholar
  32. 32.
    Nockemann P, Deun RV, Thijs B, Huys D, Vanecht E, Hecke KV, Meervelt LV, Binnemans K (2010) Uranium complexes of carboxyl-functionalized ionic liquids. Inorg Chem 49:3351–3360CrossRefGoogle Scholar
  33. 33.
    Runde W, Neu MP, Conradson SD, Clark DL, Palmer PD, Reilly SD, Scott BL, Tait CD (1997) Spectroscopic investigation of actinide speciation in concentrated chloride solution. Mater Res Soc Symp Proc 455:693–703Google Scholar
  34. 34.
    Houwer SD, Gorller WC (2001) Influence of complex formation on the electronic structure of uranium. J Alloys Compd 323–324:683–687CrossRefGoogle Scholar
  35. 35.
    Smith NA, Czerwinski KR (2013) Speciation of the uranium nitrate system via spectrophotometric titrations. J Radioanal Nucl Chem 298:1777–1783CrossRefGoogle Scholar
  36. 36.
    Rao L, Tian G (2008) Thermodynamic study of the complexation of uranium(VI) with nitrate at variable temperatures. J Chem Thermodyn 40:1001–1006CrossRefGoogle Scholar
  37. 37.
    Colletti LM, Copping R, Garduno K, Lujan EJW, Mauser AK, Mechler HA, May I, Reilly SD, Rios D, Rowley J, Schroeder AB (2017) The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions. Talanta 175:390–405CrossRefGoogle Scholar
  38. 38.
    Beltrami D, Mercier-Bion F, Cote G, Mokhtari H, Bruno C, Simoni E, Chagnes A (2014) Investigation of the speciation of uranium(VI) in concentrated phosphoric acid and in synergistic extraction systems by time-resolved laser induced fluorescence spectroscopy (TRLFS). J Mol Liq 190:42–49CrossRefGoogle Scholar
  39. 39.
    Cao J, Ren Y, Liu J (2018) Solid–liquid phase equilibria of the KH2PO4–KCl–H3PO4–H2O and KH2PO4–KCl–C2H5OH–H2O systems at T = (298.15 and 313.15) K. J Chem Eng Data 63(6):2065–2074CrossRefGoogle Scholar
  40. 40.
    Priebe S, Bateman K (2008) The ceramic waste form process at Idaho National Laboratory. Nucl Technol 162:199–207CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Satendra Kumar
    • 1
  • S. Maji
    • 1
  • K. Sundararajan
    • 1
    • 2
  • K. Sankaran
    • 1
    • 2
    Email author
  1. 1.Materials Chemistry Division, Materials Chemistry and Metal Fuel Cycle GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Homi Bhabha National InstituteIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations