Advertisement

A survey of isotopic composition (2H, 3H, 18O) of groundwater from Vojvodina

  • Jovana NikolovEmail author
  • Ines Krajcar Bronić
  • Nataša Todorović
  • Jadranka Barešić
  • Tanja Petrović Pantić
  • Tamara Marković
  • Kristina Bikit-Schroeder
  • Ivana Stojković
  • Milan Tomić
Article
  • 71 Downloads

Abstract

Isotopes of hydrogen (3H, 2H) and oxygen (18O) are perfect candidates for groundwater tracers. A survey of isotopic composition of 34 groundwater samples and one Lake from Vojvodina region (Serbia) is presented here. Tritium activity concentration and stable isotope composition (δ2H, δ18O), as well as deuterium excess, were determined. The groundwater samples lie on the groundwater regression line. Minor deviations and a few lower deuterium excess values indicate waters recharged in a different climate regime and subjected to evaporation, respectively. According to the obtained results, most of the analyzed groundwater can be characterized as modern waters, recharged mostly from precipitation.

Keywords

Groundwater age Tritium Stable isotopes Hydrogeology 

Notes

Acknowledgements

The authors acknowledge the financial support of the Ministry of Education, Science and Technological Development of Republic of Serbia, within the projects No. OI171002 and III43002, and the Provincial Secretariat for higher education and scientific research within the project "Radionuclides in drinking water and cancer incidence in Vojvodina" No. 142-451-2447/2018. This study was a part of the project No. 114-451-2538/2014 financed by Provincial Secretariat for higher education and scientific research of AP Vojvodina.

References

  1. 1.
    Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishing, Boca Raton, p 328Google Scholar
  2. 2.
    Cook PG, Herczeg AL (2000) Environmental tracers in subsurface hydrology. Springer, New York. ISBN 978-0-7923-7707-8CrossRefGoogle Scholar
  3. 3.
    Suckow A (2014) The age of groundwater—definitions, models and why we do not need this term. Appl Geochem 50:222–230CrossRefGoogle Scholar
  4. 4.
    Münnich KO (1957) Messung natürlichen Radiokohlenstoffs mit einem CO2-Proportionalzählrohr, Ph.D. thesis, Universität Heidelberg, Heidelberg, West GermanyGoogle Scholar
  5. 5.
    IAEA (2013) isotope methods for dating old groundwater. International Atomic Energy Agency, ViennaGoogle Scholar
  6. 6.
    Mook WG (2001) Environmental isotopes in the hydrological cycle, principles and applications, vols I, IV, V, technical documents in hydrology no. 39, IAEA-UNESCOGoogle Scholar
  7. 7.
    Santos IR, Zhang C, Mahera DT, Atkins ML, Holland R, Morgenstern U, Li L (2017) Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modeling. Sci Total Environ 580:367–379CrossRefGoogle Scholar
  8. 8.
    Kazemi GA, Lehr JH, Perrochet P (2006) Groundwater age. Wiley, New York. ISBN 978-0-471-71819-2CrossRefGoogle Scholar
  9. 9.
    Kralik M (2015) How to estimate mean residence times of groundwater. Procedia Earth Planet Sci 13:301–306CrossRefGoogle Scholar
  10. 10.
    Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Natl Inst Stand Technol 105:541–549CrossRefGoogle Scholar
  11. 11.
    Rohden C, Kreuzer A, Chen Z, Kipfer R, Aeschbach-Hertig W (2010) Characterizing the recharge regime of the strongly exploited aquifers of the North China Plain by environmental tracers. Water Resour Res 46(5), CiteID W05511Google Scholar
  12. 12.
    Gröning M, Rozanski K (2003) Uncertainty assessment of environmental tritium measurements in water. Accred Qual Assur 8(7–8):359–366CrossRefGoogle Scholar
  13. 13.
    Nikolov J, Krajcar Bronić I, Todorović N, Stojković I, Barešić J, Petrović-Pantić T (2018) Tritium in water: hydrology and health implications. In: Marija J (ed) Tritium advances in research and application. NOVA Science Publisher, New York, pp 157–213. ISBN 978-1-53613-507-7Google Scholar
  14. 14.
    Janković M, Janković B, Todorović D, Ignjatović L (2012) Tritium concentration analysis in atmospheric precipitation in Serbia. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(5):669–674.  https://doi.org/10.1080/10934529.2012.660039 CrossRefGoogle Scholar
  15. 15.
    Vreča P, Krajcar Bronić I, Horvatinčić N, Barešić J (2006) Isotopic characteristics of precipitation in Slovenia and Croatia: comparison of continental and maritime stations. J Hydrol 330(3–4):457–469.  https://doi.org/10.1016/j.jhydrol.2006.04.0 Google Scholar
  16. 16.
    Vreča P, Krajcar Bronić I, Leis A, Brenčić M (2008) Isotopic composition of precipitation in Ljubljana (Slovenia). Geologija (Ljubljana) 51:169–182CrossRefGoogle Scholar
  17. 17.
    Vreča P, Krajcar Bronić I, Leis A, Demšar M (2014) Isotopic composition of precipitation at the station Ljubljana (Reaktor), Slovenia—period 2007–2010. Geologija 57:217–230CrossRefGoogle Scholar
  18. 18.
    Krajcar Bronić I, Vreča P, Horvatinčić N, Barešić J, Obelić B (2006) Distribution of hydrogen, oxygen and carbon isotopes in the atmosphere of Croatia and Slovenia. Arhiv za higijenu rada i toksikologiju 57:23–29Google Scholar
  19. 19.
    Tomić M, Lazić M (2017) Healing waters of Vojvodina as a potential for development of the spa tourism, Educatio. Zadužbina Andrejević, Belgrade, p 119. ISBN 978-86-525-0300-1Google Scholar
  20. 20.
    Aksin V, Milosavljević S (1982) Geothermal research of SAP Vojvodina—research and use, Novi Sad, SerbiaGoogle Scholar
  21. 21.
    Demić I, Vukićević Z (2005) Thermal spa “Banja Kanjiža”—an example of successful utilization of geothermal energy. In: Proceedings world geothermal congress 2005, Antalya, Turkey, 24–29 April 2005Google Scholar
  22. 22.
    Bašić Đ, Petrović J, Marić M, Dragutinović G, Gvozdenac B, Štrbac D (2009) Possibilities of using the energy potential of geothermal waters in Vojvodina region (on Serbian), Prometej, Novi SadGoogle Scholar
  23. 23.
    Protić D (1995) Mineral and thermal water of Serbia. Special issue of Geoinstitute, Belgrade, book 17, p 269Google Scholar
  24. 24.
    Nikolov J, Todorović N, Janković M, Voštinar M, Bikit I, Vesković M (2013) Different methods for tritium determination in surface water by LSC. Appl Radiat Isotopes 71:51–56CrossRefGoogle Scholar
  25. 25.
    Rozanski K, Gröning M (2004) Tritium assay in water samples using electrolytic enrichment and liquid scintillation spectrometry. In: Quantifying uncertainty in nuclear analytical measurements, IAEA-TECDOC-1401, IAEA, Vienna, pp 195–217Google Scholar
  26. 26.
    Gröning M, Auer R, Brummer D, Jaklitsch M, Sambandam C, Tanweer A, Tatzber H (2009) Increasing the performance of tritium analysis by electrolytic enrichment. Isotopes Environ Health Stud 45(2):118–125.  https://doi.org/10.1080/10256010902872042 CrossRefGoogle Scholar
  27. 27.
    Barešić J, Krajcar Bronić I, Horvatinčić N, Obelić B, Sironić A, Kožar-Logar J (2011) Tritium activity measurement of water samples using liquid scintillation counter and electrolytical enrichment. In: Proceedings of the eight symposium of the croatian radiation protection association, 13–15 April 2011. Krk. Zagreb: HDZZ, pp 461–467Google Scholar
  28. 28.
    Barešić J, Horvatinčić N, Krajcar Bronić I, Obelić B (2010) Comparison of two techniques for low-level tritium measurement—gas proportional and liquid scintillation counting. In: Proceedings of the third European IRPA congress, full papers of poster presentations, Helsinki, Finland, June 2010: IRPA, 2010. P12-21-1-P12-21-5, pp 1988–1992. http://www.irpa2010europe.com/pdfs/proceedings/S12-P12.pdf
  29. 29.
    Currie LA (1968) Limits of qualitative detection and quantification determination. Anal Chem 40(3):587–593CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Busch KW, Busch MA (1997) Cavity ring-down spectroscopy: an ultra trace absorption measurement technique. In: ACS symposium series 720, OxfordGoogle Scholar
  32. 32.
    Motzer W (2007) Tritium age dating of groundwater. In: Hydro visions, vol 16, no 2. Groundwater Resources Association of California (2007)Google Scholar
  33. 33.
    Mazor E (2003) Chemical and isotopic groundwater hydrology. CRC Press, Boca Raton. ISBN 978-0824747046Google Scholar
  34. 34.
    Gibson JJ, Reid R (2010) Stable isotope fingerprint of open-water evaporation losses and effective drainage area fluctuations in a subarctic shield watershed. J Hydrol 381:142–150CrossRefGoogle Scholar
  35. 35.
    Golobočanin D, Ogrinc N, Bondzić A, Miljević N (2007) Isotopic characteristics of meteoric waters in the Belgrade region. Isotop Environ Health Stud 43:355–367CrossRefGoogle Scholar
  36. 36.
    Gat JR, Dansgaard W (1972) Stable isotope survey of the freshwater occurrences in Israel and the Jordan Rift Valley. J Hydrol 16:177–211CrossRefGoogle Scholar
  37. 37.
    Cruz-San J, Araguas L, Rozanski K, Benavente J, Cardenal J, Hidalgo MC, Garcia-Lopez S, Martinez-Garrido JC, Moral F, Olias M (1992) Sources of precipitation over South-Eastern Spain and groundwater recharge—an isotopic study. Tellus 44B:226–236Google Scholar
  38. 38.
    Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Geophys Monogr 78:1–36Google Scholar
  39. 39.
    Craig H (1961) Isotope variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Jovana Nikolov
    • 1
    Email author
  • Ines Krajcar Bronić
    • 2
  • Nataša Todorović
    • 1
  • Jadranka Barešić
    • 2
  • Tanja Petrović Pantić
    • 3
  • Tamara Marković
    • 4
  • Kristina Bikit-Schroeder
    • 1
  • Ivana Stojković
    • 5
  • Milan Tomić
    • 3
  1. 1.Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Ruđer Bošković InstituteZagrebCroatia
  3. 3.Geological Survey of SerbiaBelgradeSerbia
  4. 4.Croatian Geological SurveyZagrebCroatia
  5. 5.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations