Advertisement

Tremendous impact of substituent group on the extraction and selectivity to Am(III) over Eu(III) by diaryldithiophosphinic acids: experimental and DFT analysis

  • Ning Pu
  • Lei Xu
  • Taoxiang Sun
  • Jing ChenEmail author
  • Chao XuEmail author
Article
  • 15 Downloads

Abstract

Comparative extraction of Am3+ over Eu3+ from nitric acid media by three dithiophosphinic acids (L) bearing different substituent aryl groups was studied. Within the experimental pH range, the distribution ratio of Am3+ and Eu3+ increases with the increase of pH due to deprotonation of the acidic extractant. Both the extraction and separation ability toward Am3+/Eu3+ by these extractants were affected drastically by the substituent aryl groups. The bis-phenyl substituted extractant shows almost no ability to extract and separate Am3+ from Eu3+, while bis(ortho-trifluoromethylphenyl) dithiophosphinic acid has the optimum extraction and separation capabilities. To help reveal the complexation and extraction behavior, the structure and bonding characters of neutral ML3 (M = Am or Eu) complexes as well as the biphasic extraction reaction were studied by density functional theory (DFT). The conduct-like screening model implicit solvation model was used to simulate the extraction reaction in the aqueous-toluene biphasic system. The calculated sequence of the Gibbs free energy difference of extraction (ΔΔG ext Am/Eu ) is consistent with the experimental results.

Keywords

Dithiophosphinic acids Actinide Extraction DFT 

Notes

Acknowledgements

We acknowledge the financial support from National Natural Science Foundation of China (Grant Nos. 51425403, 21822606, 91426302). The calculations were performed using Tsinghua HPC Platform.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

10967_2019_6445_MOESM1_ESM.docx (104 kb)
Supplementary material 1 (DOCX 104 kb)

References

  1. 1.
    Baisden PA, Choppin GR (2007) Nuclear waste management and the nuclear fuel cycle. In: Nagyl S (ed) Radiochemistry and nuclear chemistry. Encyclopedia of Life Support Systems (EOLSS), Eolss Publishers, OxfordGoogle Scholar
  2. 2.
    Nash KL (1993) A review of the basic chemistry and recent developments in trivalent f-elements separations. Solvent Extr Ion Exch 11:729–768CrossRefGoogle Scholar
  3. 3.
    Smith HL, Hoffman DC (1956) Ion-exchange separations of the lanthanides and actinides by elution with ammonium alpha-hydroxy-isobutyrate. J Inorg Nucl Chem 3:243–247CrossRefGoogle Scholar
  4. 4.
    Surls JP, Choppin GR (1957) Ion-exchange study of thiocyanate complexes of the actinides and lanthanides. J Inorg Nucl Chem 4:62–73CrossRefGoogle Scholar
  5. 5.
    Brigham D, Badajoz C, Cote G, Nash KL (2011) Extraction of trivalent lanthanides and americium by Tri-n-octylphosphine oxide from ammonium thiocyanate media. Solvent Extr Ion Exch 29:270–291CrossRefGoogle Scholar
  6. 6.
    Kolarik Z (2008) Complexation and separation of lanthanides(III) and actinides(III) by heterocyclic N-donors in solutions. Chem Rev 108:4208–4252CrossRefGoogle Scholar
  7. 7.
    Dam HH, Reinhoudt DN, Verboom W (2007) Multicoordinate ligands for actinide/lanthanide separations. Chem Soc Rev 36:367–377CrossRefGoogle Scholar
  8. 8.
    Lewis FW, Harwood LM, Hudson MJ, Drew MGB, Desreux JF, Vidick G, Bouslimani N, Modolo G, Wilden A, Sypula M, Vu T, Simonin J (2011) Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand. J Am Chem Soc 133:13093–13102CrossRefGoogle Scholar
  9. 9.
    Veliscek-Carolan J (2016) Separation of actinides from spent nuclear fuel: a review. J Hazard Mater 318:266–281CrossRefGoogle Scholar
  10. 10.
    Chen J, Zhu Y, Jiao R (1996) The separation of Am from lanthanides by purified Cyanex 301 extraction. Sep Sci Technol 31:2723–2731CrossRefGoogle Scholar
  11. 11.
    Sun T, Xu C, Chen J, Duan W (2017) Formation of W/O microemulsions in the extraction of the lanthanide series by purified Cyanex 301. Solvent Extr Ion Exch 35:199–209CrossRefGoogle Scholar
  12. 12.
    Xu C, Rao L (2014) Interactions of bis(2,4,4-trimethylpentyl) dithiophosphinate with NdIII and CmIII in a homogeneous medium: a comparative study of thermodynamics and coordination modes. Chem Eur J 20:14807–14815CrossRefGoogle Scholar
  13. 13.
    He X, Tian G, Chen J, Rao L (2014) Characterization of the extracted complexes of trivalent lanthanides with purified Cyanex 301 in comparison with trivalent actinide complexes. Dalton Trans 43:17352–17357CrossRefGoogle Scholar
  14. 14.
    Daly SR, Keith JM, Batista ER, Boland KS, Clark DL, Kozimor SA, Martin RL (2012) Sulfur K-edge X-ray absorption spectroscopy and time-dependent density functional theory of dithiophosphinate extractants: minor actinide selectivity and electronic structure correlations. J Am Chem Soc 134:14408–14422CrossRefGoogle Scholar
  15. 15.
    Keith JM, Batista ER (2012) Theoretical examination of the thermodynamic factors in the selective extraction of Am3+ from Eu3+ by dithiophosphinic acids. Inorg Chem 51:13–15CrossRefGoogle Scholar
  16. 16.
    Cao X, Heidelberg D, Ciupka J, Dolg M (2010) First-principles study of the separation of AmIII/CmIII from EuIII with Cyanex301. Inorg Chem 49:10307–10315CrossRefGoogle Scholar
  17. 17.
    Tian G, Zhu Y, Xu J, Zhang P, Hu T, Xie Y, Zhang J (2003) Investigation of the extraction complexes of light lanthanides(III) with bis(2,4,4-trimethylpentyl)dithiophosphinic acid by EXAFS, IR, and MS in comparison with the americium(III) complex. Inorg Chem 42:735–741CrossRefGoogle Scholar
  18. 18.
    Bhattacharyya A, Ghanty TK, Mohapatra PK, Manchanda VK (2011) Selective americium(III) complexation by dithiophosphinates: a density functional theoretical validation for covalent interactions responsible for unusual separation behavior from trivalent lanthanides. Inorg Chem 50:3913–3921CrossRefGoogle Scholar
  19. 19.
    Jensen MP, Bond AH (2002) Comparison of covalency in the complexes of trivalent actinide and lanthanide cations. J Am Chem Soc 124:9870–9877CrossRefGoogle Scholar
  20. 20.
    Xu C, Sun T, Rao L (2017) Interactions of bis(2,4,4-trimethylpentyl) dithiophosphinate with trivalent lanthanides in a homogeneous medium: thermodynamics and coordination modes. Inorg Chem 56:2556–2565CrossRefGoogle Scholar
  21. 21.
    Chen J, Tian G, Jiao R, Zhu Y (2002) A hot test for separating americium from fission product lanthanides by purified Cyanex 301 extraction in centrifugal contactors. J Nucl Sci Technol 39:325–327CrossRefGoogle Scholar
  22. 22.
    Chen J, Wang S, Xu C, Wang X, Feng X (2012) Separation of americium from lanthanides by purified Cyanex 301 countercurrent extraction in miniature centrifugal contactors. Proc Chem 7:172–177CrossRefGoogle Scholar
  23. 23.
    Marc P, Custelcean R, Groenewold GS, Klaehn JR, Peterman DR, Delmau LH (2012) Degradation of Cyanex 301 in contact with nitric acid media. Ind Eng Chem Res 51:13238–13244CrossRefGoogle Scholar
  24. 24.
    Chen J, Jiao R, Zhu Y (1996) A study on the radiolytic stability of commercial and purified Cyanex 301. Solvent Extr Ion Exch 14:555–565CrossRefGoogle Scholar
  25. 25.
    Klaehn JR, Peterman DR, Harrup MK, Tillotson RD, Luther TA, Law JD, Daniels LM (2008) Synthesis of symmetric dithiophosphinic acids for “minor actinide” extraction. Inorg Chim Acta 361:2522–2532CrossRefGoogle Scholar
  26. 26.
    Modolo G, Odoj R (1999) Synergistic selective extraction of actinides(III) over lanthanides from nitric acid using new aromatic diorganyldithiophosphinic acids and neutral organophosphorus compounds. Solvent Extr Ion Exch 17:33–53CrossRefGoogle Scholar
  27. 27.
    Peterman DR, Greenhalgh MR, Tillotson RD, Klaehn JR, Harrup MK, Luther TA, Law JD (2010) Selective extraction of minor actinides from acidic media using symmetric and asymmetric dithiophosphinic acids. Sep Sci Technol 45:1711–1717CrossRefGoogle Scholar
  28. 28.
    Peterman DR, Martin LR, Klaehn JR, Harrup MK, Greenhalgh MR, Luther TA (2009) Selective separation of minor actinides and lanthanides using aromatic dithiophosphinic and phosphinic acid derivatives. J Radioanal Nucl Chem 282:527–531CrossRefGoogle Scholar
  29. 29.
    Wang F, Jia C, Chen J (2013) Convenient synthesis of (o-CF3Ph)2PS2H and evaluation in selective extraction of actinides over lanthanides. J Radioanal Nucl Chem 298:531–536CrossRefGoogle Scholar
  30. 30.
    Daly SR, Klaehn JR, Boland KS, Kozimor SA, MacInnes MM, Peterman DR, Scott BL (2012) NMR spectroscopy and structural characterization of dithiophosphinate ligands relevant to minor actinide extraction processes. Dalton Trans 41:2163–2175CrossRefGoogle Scholar
  31. 31.
    Wang F, Jia C, He X, Chen J (2010) A method for synthesising asymmetric dithiophosphinic acids. Chinese Patent, CN101619074AGoogle Scholar
  32. 32.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C. 01. Gaussian. Inc., WallingfordGoogle Scholar
  33. 33.
    Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  34. 34.
    Lee C, Yang W, Parr RG (1998) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785CrossRefGoogle Scholar
  35. 35.
    Cao X, Dolg M (2004) Segmented contraction scheme for small-core actinide pseudopotential basis sets. J Molec Struct Theochem 673:203–209CrossRefGoogle Scholar
  36. 36.
    Küchle W, Dolg M, Stoll H, Preuss H (1994) Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J Chem Phys 100:7535–7542CrossRefGoogle Scholar
  37. 37.
    Dolg M, Stoll H, Savin A, Preuss H (1989) Energy-adjusted pseudopotentials for the rare earth elements. Theor Chim Acta 75:173–194CrossRefGoogle Scholar
  38. 38.
    Cao X, Dolg M (2002) Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J Molec Struct Theochem 581:139–147CrossRefGoogle Scholar
  39. 39.
    Liang YN, Yang X, Ding SD, Li SJ, Wang F, Chai ZF, Wang DQ (2015) Computational thermodynamic study on the complexes of Am(III) with tridentate N-donor ligands. New J Chem 39:7716–7729CrossRefGoogle Scholar
  40. 40.
    Wang CZ, Shi WQ, Lan JH, Zhao YL, Wei YZ, Chai ZF (2013) Complexation behavior of Eu(III) and Am(III) with CMPO and Ph2CMPO ligands: insights from density functional theory. Inorg Chem 52:10904–10911CrossRefGoogle Scholar
  41. 41.
    Lan JH, Shi WQ, Yuan LY, Zhao YL, Li J, Chai ZF (2011) Trivalent actinide and lanthanide separations by tetradentate nitrogen ligands: a quantum chemistry study. Inorg Chem 50:9230–9237CrossRefGoogle Scholar
  42. 42.
    Klamt A, Schuurmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805CrossRefGoogle Scholar
  43. 43.
    Dinescu A, Benson MT (2008) Electronic structure studies on deprotonation of dithiophosphinic acids in water clusters. J Phys Chem A 112:12270–12280CrossRefGoogle Scholar
  44. 44.
    Benson MT, Moser ML, Peterman DR, Dinescu A (2008) Determination of pKa for dithiophosphinic acids using density functional theory. J Molec Struct Theochem 867:71–77CrossRefGoogle Scholar
  45. 45.
    Diamond RM, Street JK, Seaborg GT (1954) An ion-exchange study of possible hybridized 5f bonding in the actinides. J Am Chem Soc 76:1461–1469CrossRefGoogle Scholar
  46. 46.
    Minasian SG, Keith JM, Batista ER, Boland KS, Clark DL, Conradson SD, Kozimor SA, Martin RL, Schwarz DE, Shuh DK (2012) Determining relative f and d orbital contributions to M-Cl covalency in MCl6 2−(M = Ti, Zr, Hf, U) and UOCl5 using Cl K-edge X-ray absorption spectroscopy and time-dependent density functional theory. J Am Chem Soc 134:5586–5597CrossRefGoogle Scholar
  47. 47.
    Neidig ML, Clark DL, Martin RL (2013) Covalency in f-element complexes. Coordin Chem Rev 257:394–406CrossRefGoogle Scholar
  48. 48.
    Brennan JG, Stults SD, Andersen RA, Zalkin A (1987) The coordination chemistry of trivalent uranium and cerium. Inorg Chim Acta 139:201–202CrossRefGoogle Scholar
  49. 49.
    Bryantsev VS, Diallo MS, Goddard WA III (2008) Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J Phys Chem B 112:9709–9719CrossRefGoogle Scholar
  50. 50.
    David F, Vokhmin V, Ionova G (2001) Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions. J Mol Liq 90:45–62CrossRefGoogle Scholar
  51. 51.
    David F, Vokhmin V (2003) Thermodynamic properties of some tri-and tetravalent actinide aquo ions. New J Chem 27:1627–1632CrossRefGoogle Scholar
  52. 52.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina

Personalised recommendations