Advertisement

Effect of neutron irradiation on the optical properties of PMMA/RhB used in optical fiber amplification

  • Sherif S. Nafee
  • Taymour A. HamdallaEmail author
Article
  • 21 Downloads

Abstract

The structural and optical properties of the neutron irradiated PMMA doped by 5 wt% RhB have been investigated. Fourier transform infrared analysis showed a significant variation in the polymer’s main chain. Moreover, the linear and nonlinear optical properties of the doped samples, both pre and post irradiation were studied. The results showed that the refractive indices and energy gaps of the examined samples were increased at a neutron dose of 1.5 kGy by about 8% and 7%, respectively. The results gave a good indication in predicting the gain degradation of the polymer optical amplifier when exposed to a low dose irradiation.

Keywords

PMMA/RhB Irradiation Optical amplifier Energy gap 

Notes

Acknowledgements

This work was financed by King Abdulaziz University, Jeddah, Saudi Arabia, Deanship of scientific research, Distinct Research Study, under a contract number (141-130-1437D).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kailasnath M, Sreejaya TS, Kumar R, Rajesh Kumar CPG, Nampoori VPN, Radhakrishnan P (2008) Opt Laser Technol 40(5):687–691CrossRefGoogle Scholar
  2. 2.
    Kuriki K, Kobayashi T, Imai N, Tamura T, Nishihara S, Nishizawa Y, Tagaya A, Koike Y, Okamoto Y (2000) Appl Phys Lett 77(3):331–333CrossRefGoogle Scholar
  3. 3.
    Wang CX, Wang GY, Hicks AV, Dudley DR, Pang HY, Hodgson N (2006) Solid state lasers XV: technology and devices, vol 6100. International Society for Optics and Photonics, Bellingham, p 610019CrossRefGoogle Scholar
  4. 4.
    Hamdalla TA, Nafee SS (2015) Opt Laser Technol 74:167–172CrossRefGoogle Scholar
  5. 5.
    Yariv E, Schultheiss S, Saraidarov T, Reisfeld R (2001) Opt Mater 16(1–2):29–38CrossRefGoogle Scholar
  6. 6.
    Arrue J, Jiménez F, Ayesta I, Illarramendi MA, Zubia J (2011) Polymers 3(3):1162–1180CrossRefGoogle Scholar
  7. 7.
    Liang H, Zheng Z, Li Z, Xu J, Chen B, Zhao H, Zhang Q, Ming H (2004) J Appl Polym Sci 93(2):681–685CrossRefGoogle Scholar
  8. 8.
    Tagaya A, Koike Y, Kinoshita T, Nihei E, Yamamoto T, Sasaki K (1993) Appl Phys Lett 63(7):883–884CrossRefGoogle Scholar
  9. 9.
    Grätzel M (2003) Photochem Rev 4(2):145–153CrossRefGoogle Scholar
  10. 10.
    Tagaya A, Teramoto S, Yamamoto T, Fujii K, Nihei E, Koike Y, Sasaki K (1995) IEEE J Quantum Electron. 31(12):2215–2220CrossRefGoogle Scholar
  11. 11.
    Rajesh M, Sheeba M, Geetha K, Vallaban CPG, Radhakrishnan P, Nampoori VP (2007) Appl Opt 46(1):106–112CrossRefGoogle Scholar
  12. 12.
    Pawde SM, Deshmukh K (2009) J Appl Polym Sci 114(4):2169–2179CrossRefGoogle Scholar
  13. 13.
    Sharma M, Sharma K, Bose S (2013) J Phys Chem B 117(28):8589–8602CrossRefGoogle Scholar
  14. 14.
    Egusa S, Ishigure K, Tabata Y (1979) Macromolecules 12(5):939–944CrossRefGoogle Scholar
  15. 15.
    Morana A, Girard S, Cannas M, Marin E, Marcandella C, Paillet P, Perisse J et al (2015) Opt Mater Express 5(4):898–911CrossRefGoogle Scholar
  16. 16.
    Toh K, Sakasai K, Nakamura T, Soyama K, Shikama T (2011) J Nucl Mater 417(1–3):814–817CrossRefGoogle Scholar
  17. 17.
    Brichard B, Borgermans P, Fernandez AF, Lammens K, Decreton A (2001) IEEE Trans Nucl Sci 48:2069CrossRefGoogle Scholar
  18. 18.
    Cheymol G, Long H, Villard JF, Brichard B (2008) IEEE Trans Nucl Sci 55:2252CrossRefGoogle Scholar
  19. 19.
    Amersham, Neutron sources Americium-241/Beryllium and Californium-252, Technical Bulletin 76/7Google Scholar
  20. 20.
    El-Sersy AR, Eman SA, Khaled NE (2004) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 226(3):345–350CrossRefGoogle Scholar
  21. 21.
    Shores EF (2000) Contact dose equivalent rates from common neutron sources. No. LA-UR-00-3092. Los Alamos National Lab., NM (US)Google Scholar
  22. 22.
    National Research Council (2008) Committee on Radiation source use and replacement. Radiation source use and replacement: abbreviated version: 35. National Research Council (US), Nuclear and Radiation Studies BoardGoogle Scholar
  23. 23.
    Saeed A, Nafee SS, Shaheen SA, Raouf GA, Al-Hadeethi Y, Kamal SM, Razvi MAN (2016) Appl Math Comput 274:604–610Google Scholar
  24. 24.
    Sionkowska A (2011) Prog Polym Sci 36(9):1254–1276CrossRefGoogle Scholar
  25. 25.
    Rai VN, Mukherjee C, Jain B (2016). arXiv preprint arXiv:1611.02129
  26. 26.
    Rajendran S, Uma T (2000) Mater Lett 44(3–4):242–247CrossRefGoogle Scholar
  27. 27.
    Deepa M, Sharma N, Agnihotry SA, Chandra R (2002) J Mater Sci 37(9):1759–1765CrossRefGoogle Scholar
  28. 28.
    Wang H, Bardo AM, Collinson MM, Higgins DA (1998) J Phys Chem B 102(37):7231–7237CrossRefGoogle Scholar
  29. 29.
    Ahmed RM (2009) Int J Photoenergy 2009:9CrossRefGoogle Scholar
  30. 30.
    Ennis CP, Kaiser RI (2010) Phys Chem Chem Phys 12(45):14902–14915CrossRefGoogle Scholar
  31. 31.
    Tiwari P, Srivastava AK, Khattak BQ, Verma S, Upadhyay A, Sinha AK, Ganguli T, Lodha GS, Deb SK (2014) Measurement 51:1–8CrossRefGoogle Scholar
  32. 32.
    Shibayama M, Tanaka T (eds) (1993) Responsive gels: volume transitions I. Springer, Berlin, pp 1–62Google Scholar
  33. 33.
    Sayyah SM, Khaliel AB, Abd El-Salam HM (2007) J Appl Polym Sci 106(2):1294–1300CrossRefGoogle Scholar
  34. 34.
    Tauc J (ed) (2012) Amorphous and liquid semiconductors. Springer Science & Business Media, BerlinGoogle Scholar
  35. 35.
    Morley S, Von der Emde M, Zahn DRT, Offermann V, Ng TL, Maung N, Wright AC, Fan GH, Poole IB, Williams JO (1996) J Appl Phys 79(6):3196–3199CrossRefGoogle Scholar
  36. 36.
    Walton AK, Moss TS (1963) Proc Phys Soc 81(3):509CrossRefGoogle Scholar
  37. 37.
    Nafee SS, Hamdalla TA, Shaheen SA (2017) Phase Transit 90(5):439–448CrossRefGoogle Scholar
  38. 38.
    Parkins GR, Lawrence WE, Christy RW (1981) Phys Rev B 23(12):6408CrossRefGoogle Scholar
  39. 39.
    Brenner DW (1990) Phys Rev B 42(15):9458CrossRefGoogle Scholar
  40. 40.
    Wemple SH, DiDomenico M Jr. (1971) Phys Rev B 3(4):1338CrossRefGoogle Scholar
  41. 41.
    Uwe K, Vollmer M (2013) Optical properties of metal clusters, vol 25. Springer Science & Business Media, BerlinGoogle Scholar
  42. 42.
    Kim S-H, Yoko T (1995) J Am Ceram Soc 78(4):1061–1065CrossRefGoogle Scholar
  43. 43.
    Ticha H, Tichy L (2002) J Optoelectron Adv Mater 4(2):381–386Google Scholar
  44. 44.
    Seleim SM, Hamdalla TA, Mahmoud ME (2017) Spectrochim Acta Part A Mol Biomol Spectrosc 184:134–140CrossRefGoogle Scholar
  45. 45.
    Clarke DN, Grainger JF (2013) Polarized light and optical measurement: international series of monographs in natural philosophy, vol 35. Elsevier, LondonGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
  3. 3.Physics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt

Personalised recommendations