Advertisement

Comparison and validation of methods for the determination of 90Sr by Cerenkov counting in biological and sediment samples, including green chemistry metrics

  • J. Rivera-SilvaEmail author
  • S. Hurtado-Bermúdez
  • M. Villa-Alfageme
  • G. Manjón
Article
  • 53 Downloads

Abstract

In this work, a comparative study of two popular radiochemical procedures for 90Sr determination in biological and sediment samples via Cerenkov counting was performed. Comparative tests were carried out with a Liquid Scintillation Counter (LSC) and several key factors related to green analytical chemistry were considered. Chemical yields, time of analysis, cost per sample, hazardous reagents used (H-factor), wastes generated (E-factor) and energy consumed (Q-factor) were calculated. The separation methods are based on two contrasted extraction mechanisms: chromatographic extraction (using Sr resin, a crown-ether diluted in octanol) and liquid–liquid solvent extraction (using HDEHP, an organophosphorus compound), where the chromatographic extraction method was optimized. The developed analytical procedure based on HDEHP was cheaper and faster than the analytical procedure based on Sr resin, according to the green chemistry. On the other hand, the Sr resin method provided a minimum detectable activity (MDA) of 1.1 Bq kg−1, lower than 1.5 Bq kg−1 corresponding to HDEHP method, due to the higher capacity of sample that can be loaded into the resin. The accuracy and reproducibility of both methods was confirmed in the analysis of certified reference materials provided by the International Atomic Energy Agency (IAEA).

Keywords

90Sr Sr resin Liquid Scintillation Counter Cerenkov counting Sediment Biological samples Green chemistry Intercomparison 

Notes

Acknowledgements

We would like to express our deep gratitude to the Research, Technology and Innovation Centre (CITIUS), belonging to the University of Seville, for supporting this research. We would also like to extend our thanks to the technicians of the Radioisotope Research Laboratory for their help in the whole process.

References

  1. 1.
    Casacuberta N, Masqué P, Garcia-Orellana J, Garcia-Tenorio R, Buesseler KO (2013) 90Sr and 89Sr in seawater of Japan as a consequence of the Fukushima Daiichi nuclear accident. Biogeosciences 10:3649–3659.  https://doi.org/10.5194/bg-10-3649-2013 CrossRefGoogle Scholar
  2. 2.
    Castrillejo M, Casacuberta N, Breier CF, Pike SM, Masqué P, Buesseler KO (2016) Reassessment of 90Sr, 137Cs, and 134Cs in the coast of Japan derived from the Fukushima Dai-ichi nuclear accident. Environ Sci Technol 50:173–180.  https://doi.org/10.1021/acs.est.5b03903 CrossRefGoogle Scholar
  3. 3.
    Rondahl SH, Ramebäck H (2018) Evaluation of different methods for measuring 89Sr and 90Sr: measurement uncertainty for the different methods as a function of the activity ratio. Appl Radiat Isot 140:87–95.  https://doi.org/10.1016/j.apradiso.2018.06.016 CrossRefGoogle Scholar
  4. 4.
    IAEA (2013) Rapid simultaneous determination of 89Sr and 90Sr in milk: a procedure using Cerenkov and scintillation counting, International Atomic Energy Agency, Vienna, 2013. https://www-pub.iaea.org/MTCD/Publications/PDF/IAEA-AQ-27_web.pdf
  5. 5.
    Habibi A, Boulet B, Gleizes M, Larivière D, Cote G (2015) Rapid determination of actinides and 90Sr in river water. Anal Chim Acta 883:109–116.  https://doi.org/10.1016/j.aca.2015.04.025 CrossRefGoogle Scholar
  6. 6.
    Vajda N, Kim C-K (2010) Determination of radiostrontium isotopes: a review of analytical methodology. Appl Radiat Isot 68:2306–2326.  https://doi.org/10.1016/j.apradiso.2010.05.013 CrossRefGoogle Scholar
  7. 7.
    Xu C, Wang J, Chen J (2012) Solvent extraction of strontium and cesium: a review of recent progress. Solvent Extr Ion Exch 30:623–650.  https://doi.org/10.1080/07366299.2012.700579 CrossRefGoogle Scholar
  8. 8.
    Shao Y, Yang G, Tazoe H, Ma L, Yamada M, Xu D (2018) A review of measurement methodologies and their applications to environmental 90Sr. J Environ Radioact 192:321–333.  https://doi.org/10.1016/j.jenvrad.2018.07.013 CrossRefGoogle Scholar
  9. 9.
    Bojanowski R, Knapinska-Skiba D (1990) Determination of low-level 90Sr in environmental materials: a novel approach to the classical method. J Radioanal Nucl Chem Artic 138:207–218.  https://doi.org/10.1007/bf02039846 CrossRefGoogle Scholar
  10. 10.
    Wilken RD, Diehl R (1987) Strontium-90 in environmental samples from Northern Germany before and after the Chernobyl accident. Radiochim Acta 41:157–162.  https://doi.org/10.1524/ract.1987.41.4.157 CrossRefGoogle Scholar
  11. 11.
    Chamizo E, López-Lora M, Villa M, Casacuberta N, López-Gutiérrez JM, Pham MK (2015) Analysis of 236U and plutonium isotopes, 239,240Pu, on the 1 MV AMS system at the Centro Nacional de Aceleradores, as a potential tool in oceanography. Nucl Instrum Methods Phys Res B 361:535–540.  https://doi.org/10.1016/j.nimb.2015.02.066 CrossRefGoogle Scholar
  12. 12.
    International Organization for Standards (2009) Measurement of radioactivity in the environment—soil—part 5: measurement of strontium 90. ISO 18589-5Google Scholar
  13. 13.
    Vaney B, Friedli C, Geering JJ, Lerch P (1989) Rapid trace determination of radiostrontium in milk and drinking water. J Radioanal Nucl Chem Artic 134:87–95.  https://doi.org/10.1007/bf02047273 CrossRefGoogle Scholar
  14. 14.
    Dietz ML, Yaeger J, Sajdak LR, Jensen MP (2005) Characterization of an improved extraction chromatographic material for the separation and preconcentration of strontium from acidic media. Sep Sci Technol.  https://doi.org/10.1081/ss-200042247 Google Scholar
  15. 15.
    Vaca F, Manjón G, García-León M (1999) 90Sr in an alkaline pulp mill located in the South of Spain. J Environ Radioact 46:327–344.  https://doi.org/10.1016/s0265-931x(98)00151-9 CrossRefGoogle Scholar
  16. 16.
    Uesugi M, Watanabe R, Sakai H, Yokoyama A (2018) Rapid method for determination of 90Sr in seawater by liquid scintillation counting with an extractive scintillator. Talanta 178:339–347.  https://doi.org/10.1016/j.talanta.2017.09.041 CrossRefGoogle Scholar
  17. 17.
    Hawkins CA, Shkrob IA, Mertz CJ, Dietz ML, Kaminski MD (2012) Novel tandem column method for the rapid isolation of radiostrontium from human urine. Anal Chim Acta 746:114–122.  https://doi.org/10.1016/j.aca.2012.08.007 CrossRefGoogle Scholar
  18. 18.
    Maxwell SL, Culligan BK, Shaw PJ (2013) Rapid determination of radiostrontium in large soil samples. J Radioanal Nucl Chem 295:965–971.  https://doi.org/10.1007/s10967-012-1863-2 CrossRefGoogle Scholar
  19. 19.
    Maxwell SL, Culligan BK, Utsey RC (2013) Rapid determination of radiostrontium in seawater samples. J Radioanal Nucl Chem 298:867–875.  https://doi.org/10.1007/s10967-013-2430-1 CrossRefGoogle Scholar
  20. 20.
    Tazoe H, Obata H, Yamagata T, Karube Z, Nagai H, Yamada M (2016) Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA resin for seawater monitoring. Talanta 152:219–227.  https://doi.org/10.1016/j.talanta.2016.01.065 CrossRefGoogle Scholar
  21. 21.
    Jung Y, Kim H, Lim JM, Chung KH (2017) Feasibility study of an analytical method for detecting 90Sr in soil using DGA resin and Sr resin. J Radioanal Nucl Chem 313:401–408.  https://doi.org/10.1007/s10967-017-5328-5 CrossRefGoogle Scholar
  22. 22.
    Ometáková J, Dulanská S, Mátel L, Remenec B (2011) A comparison of classical 90Sr separation methods with selective separation using molecular recognition technology products AnaLig® SR-01 gel, 3M Empore™ Strontium Rad Disk and extraction chromatography Sr®Resin. J Radioanal Nucl Chem 290:319–323.  https://doi.org/10.1007/s10967-011-1338-x CrossRefGoogle Scholar
  23. 23.
    Pawlak DW, Parus JL, Dziel T, Muklanowicz A, Mikolajczak R (2013) Determination of 90Sr traces in medical 90Y after separation on DGA column. Talanta 114:1–4.  https://doi.org/10.1016/j.talanta.2013.03.081 CrossRefGoogle Scholar
  24. 24.
    Qiao J, Salminen-Paatero S, Rondahl SH, Bourgeaux-Goget M, Roos P, Lagerkvist P, Strålberg E, Ramebäck H (2017) Inter-laboratory exercise with an aim to compare methods for 90Sr and 239, 240Pu determination in environmental soil samples. J Radioanal Nucl Chem 314:813–826.  https://doi.org/10.1007/s10967-017-5385-9 CrossRefGoogle Scholar
  25. 25.
    Dulanská S, Antalík I, Labaška M, Remenec B, Mátel A (2013) Rapid determination of 239,240Pu, 238Pu, 241Am and 90Sr in high contaminated samples waste using combined SPE sorbents AnaLig® Pu-02, AnaLig® Sr-01 and DGA® resin. J Radioanal Nucl Chem 295:1635–1639.  https://doi.org/10.1007/s10967-012-2174-3 CrossRefGoogle Scholar
  26. 26.
    Villa M, Manjon G, Garcia-Leon M (2003) Study of colour quenching effects in the calibration of liquid scintillation counters: the case of 210Pb. Nucl Instrum Methods Phys Res A 496:413–424.  https://doi.org/10.1016/s0168-9002(02)01759-x CrossRefGoogle Scholar
  27. 27.
    Palomo M, Villa M, Casacuberta N, Peñalver A, Borrull F, Aguilar C (2011) Evaluation of different parameters affecting the liquid scintillation spectrometry measurement of gross alpha and beta index in water samples. Appl Radiat Isot 69:1274–1281.  https://doi.org/10.1016/j.apradiso.2011.04.020 CrossRefGoogle Scholar
  28. 28.
    Villa M, Manjón G (2004) Low-level measurements of tritium in water. Appl Radiat Isot 61:319–323.  https://doi.org/10.1016/j.apradiso.2004.03.027 CrossRefGoogle Scholar
  29. 29.
    Bjørnstad HE, Lien HN, Yu YF, Salbu B (1992) Determination of 90Sr in environmental and biological materials with combined HDEHP solvent extraction-low liquid scintillation counting technique. J Radioanal Nucl Chem Artic 156:165–173.  https://doi.org/10.1007/bf02037431 CrossRefGoogle Scholar
  30. 30.
    Hurtado-Bermudez S, Mas JL, Villa-Alfageme M (2017) A sequential determination of 90Sr and 210Po in food samples. Food Chem.  https://doi.org/10.1016/j.foodchem.2017.02.077 Google Scholar
  31. 31.
    Philip E, Chiarizia R, Dietz ML (1992) A novel strontium-selective extraction chromatographic resin*. Solvent Extr Ion Exch.  https://doi.org/10.1080/07366299208918107 Google Scholar
  32. 32.
    Mosqueda F, Villa M, Vaca F, Bolívar JP (2007) Colour quenching corrections on the measurement of 90Sr through Cerenkov counting. Anal Chim Acta 604:184–190.  https://doi.org/10.1016/j.aca.2007.10.007 CrossRefGoogle Scholar
  33. 33.
    Knoll GF (2000) Radiation detection and measurement, 3rd ed. Wiley.  https://doi.org/10.1017/cbo9781107415324.004
  34. 34.
    Rapkin E, Gibbs JA (1963) Polyethylene containers for liquid scintillation spectrometry. Int J Appl Radiat Isot 14:71–74.  https://doi.org/10.1016/0020-708x(63)90098-x CrossRefGoogle Scholar
  35. 35.
    BIPM, IEC, IFCC, ILAC, ISO, IUPAC, UPAP, OIML, JCGM 100 (2008) Evaluation of measurement data—guide to the expression of uncertainty in measurement. https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
  36. 36.
    Fujii H, Takiue M (1988) Radioassay of dual-labeled samples by sequential Cherenkov counting and liquid scintillation efficiency tracing technique. Nucl Instrum Methods Phys Res A 273:377–380.  https://doi.org/10.1016/0168-9002(88)90839-x CrossRefGoogle Scholar
  37. 37.
    Baillie LA (1960) Determination of liquid scintillation counting efficiency by pulse height shift. Int J Appl Radiat Isot 8:1–7.  https://doi.org/10.1016/0020-708x(60)90153-8 CrossRefGoogle Scholar
  38. 38.
    Todorović N, Stojković I, Nikolov J, Tenjović B (2017) 90Sr determination in water samples using Čerenkov radiation. J Environ Radioact 169–170:197–202.  https://doi.org/10.1016/j.jenvrad.2017.01.021 CrossRefGoogle Scholar
  39. 39.
    Eichrom (2014) Eichrom method: SRW 01 on strontium 89, 90 in waterGoogle Scholar
  40. 40.
    Thompson M, Ellison SLR, Wood R (2006) The International Harmonized Protocol for the proficiency testing of analytical chemistry laboratories (IUPAC Technical Report). Pure Appl Chem 78:145–196.  https://doi.org/10.1351/pac200678010145 CrossRefGoogle Scholar
  41. 41.
    I.E.C. International Organization for Standardization (2010) Conformity assessment—general requirements for proficiency testing. ISO/IEC 17043:2010 (E). 1 (2010) 1–46.  https://doi.org/10.1016/j.ccr.2008.07.008
  42. 42.
    Currie LA (1968) Limits for qualitative detection and quantitative determination: application to radiochemistry. Anal Chem 40:586–593.  https://doi.org/10.1021/ac60259a007 CrossRefGoogle Scholar
  43. 43.
    Anastas PT (1999) Green Chemistry and the role of analytical methodology development. Crit Rev Anal Chem 29:167–175.  https://doi.org/10.1080/10408349891199356 CrossRefGoogle Scholar
  44. 44.
    Tobiszewski M, Mechlińska A, Zygmunt B, Namieśnik J (2009) Green analytical chemistry in sample preparation for determination of trace organic pollutants. TrAC Trends Anal Chem 28:943–951.  https://doi.org/10.1016/j.trac.2009.06.001 CrossRefGoogle Scholar
  45. 45.
    Vila Verde GM, Barros DA, Oliveira SM, Aquino LG, Santos DM, de Paula RJ, Dias DL, Piñeiro M, Pereira MM (2018) A Green protocol for microwave-assisted extraction of volatile oil terpenes from pterodon emarginatus Vogel. (Fabaceae). Molecules.  https://doi.org/10.3390/molecules23030651 Google Scholar
  46. 46.
    Clarke CJ, Tu W-C, Levers O, Bröhl A, Hallett JP (2018) Green and sustainable solvents in chemical processes. Chem Rev 118:747–800.  https://doi.org/10.1021/acs.chemrev.7b00571 CrossRefGoogle Scholar
  47. 47.
    Sajid M, Płotka-Wasylka J (2018) “Green” nature of the process of derivatization in analytical sample preparation. TrAC Trends Anal Chem 102:16–31.  https://doi.org/10.1016/j.trac.2018.01.005 CrossRefGoogle Scholar
  48. 48.
    Jędrkiewicz R, Orłowski A, Namieśnik J, Tobiszewski M (2016) Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs? Talanta 147:282–288.  https://doi.org/10.1016/j.talanta.2015.10.001 CrossRefGoogle Scholar
  49. 49.
    Hurtado-Sánchez MDC, Lozano VA, Rodríguez-Cáceres MI, Durán-Merás I, Escandar GM (2015) Green analytical determination of emerging pollutants in environmental waters using excitation-emission photoinduced fluorescence data and multivariate calibration. Talanta.  https://doi.org/10.1016/j.talanta.2014.11.022 Google Scholar
  50. 50.
    Vosough M, Rashvand M, Esfahani HM, Kargosha K, Salemi A (2015) Direct analysis of six antibiotics in wastewater samples using rapid high-performance liquid chromatography coupled with diode array detector: a chemometric study towards green analytical chemistry. Talanta 135:7–17.  https://doi.org/10.1016/j.talanta.2014.12.036 CrossRefGoogle Scholar
  51. 51.
    Sheldon R (1992) Organic synthesis. Past, present and future. Chem Ind 23:903–906. https://www.researchgate.net/publication/283935381_Organic_synthesis_Past_present_and_future
  52. 52.
    Trost BM (1995) Atom economy—a challenge for organic synthesis: homogeneous catalysis leads the way. Angew Chemie Int Ed English 34:259–281.  https://doi.org/10.1002/anie.199502591 CrossRefGoogle Scholar
  53. 53.
    Curzons AD, Constable DJC, Mortimer DN, Cunningham VL (2001) So you think your process is green, how do you know? Using principles of sustainability to determine what is green—a corporate perspective. Green Chem.  https://doi.org/10.1039/b007871i Google Scholar
  54. 54.
    Van Aken K, Strekowski L, Patiny L (2006) EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J Org Chem.  https://doi.org/10.1186/1860-5397-2-3 Google Scholar
  55. 55.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice.  https://doi.org/10.1039/b513020b
  56. 56.
    Makarova AS, Baurin DV, Gordienko MG, Kudryavtseva EI (2017) Green chemistry for the optimum technology of biological conversion of vegetable waste. Sustain Prod Consum 10:66–73.  https://doi.org/10.1016/j.spc.2016.12.003 CrossRefGoogle Scholar
  57. 57.
    Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312.  https://doi.org/10.1039/b918763b CrossRefGoogle Scholar
  58. 58.
    Sala S, Goralczyk M (2013) Chemical footprint: a methodological framework for bridging life cycle assessment and planetary boundaries for chemical pollution. Integr Environ Assess Manag 9:623–632.  https://doi.org/10.1080/01430750.1981.9675751 CrossRefGoogle Scholar
  59. 59.
    NSF International, NSF/GCI/ANSI 355 Greener Chemicals and Processes Standard, [Organization Website] (2015)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Servicio de Radioisótopos, Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de SevillaSevilleSpain
  2. 2.Dpto. Física Aplicada II, Universidad de Sevilla, ETSIESevilleSpain

Personalised recommendations