Advertisement

The partitioning of 131I in sludge samples from a wastewater treatment plant

  • Joana Martínez
  • Tatiana Baciu
  • Alejandra Peñalver
  • Carme Aguilar
  • Francesc BorrullEmail author
Article
  • 54 Downloads

Abstract

This study analyses the partition of 131I in organic, inorganic and residual fractions from secondary and digested sludge. Due to the microbiological process in the aeration tank, it was found that the secondary sludge sample had the highest 131I content associated with the organic fraction. In the digested sludge, the organic fraction was smaller due to the anaerobic digestion of part of the organic matter. In this case, 131I was also distributed into the inorganic and residual fractions. Based on this second result, the potential volatilization of 131I in the anaerobic digester has been assessed. The results showed that this radionuclide was not present in air samples, and therefore the potential exposure through inhalation would be negligible for WWTP workers.

Keywords

131Wastewater treatment plant Secondary sludge Digested sludge Organic matter Radionuclides 

Notes

Acknowledgements

The authors are grateful for the support of Aigües de Reus for giving us the opportunity to take samples inside the Reus WWTP. We also thank KEMIRA IBERICA SA for kindly providing us their coagulant products.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    European Commission (2014) Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council. Official Journal of the European UnionGoogle Scholar
  2. 2.
    Law 22/2011 (2011) Law 22/2011, of 28th July, of wastes and contaminated soils. Official State Gazette 181. Madrid, 29th of July, SpainGoogle Scholar
  3. 3.
    Ivanová L, Mackuľak T, Grabic R et al (2018) Pharmaceuticals and illicit drugs—a new threat to the application of sewage sludge in agriculture. Sci Total Environ 634:606–615.  https://doi.org/10.1016/j.scitotenv.2018.04.001 CrossRefGoogle Scholar
  4. 4.
    Cyprowski M, Stobnicka-Kupiec A, Ławniczek-Wałczyk A et al (2018) Anaerobic bacteria in wastewater treatment plant. Int Arch Occup Environ Health 91:571–579.  https://doi.org/10.1007/s00420-018-1307-6 CrossRefGoogle Scholar
  5. 5.
    Sun YH, Yang ZH, Luo YM (2009) The counts and environmental risks of pathogens in sewage sludge from Yangtze River Delta. In: 3rd Int Conf Bioinforma Biomed Eng iCBBE 2009 8–11.  https://doi.org/10.1109/ICBBE.2009.5163585
  6. 6.
    Lewis DL, Gattie DK (2002) Pathogen risks from applying sewage sludge to land. Environ Sci Technol 1:287–293.  https://doi.org/10.1021/es0223426 Google Scholar
  7. 7.
    Lopes TR, Pletsch AL, Periotto F et al (2018) Efficiency Physics and Chemistry in Different Sewage Treatment Systems in Environmental Contaminants Removal. J Environ Eng 144:1–8.  https://doi.org/10.1061/(ASCE)EE.1943-7870.0001428 CrossRefGoogle Scholar
  8. 8.
    Cantinho P, Matos M, Trancoso MA, Correia dos Santos MM (2016) Behaviour and fate of metals in urban wastewater treatment plants: a review. Int J Environ Sci Technol 13:359–386.  https://doi.org/10.1007/s13762-015-0887-x CrossRefGoogle Scholar
  9. 9.
    Li X, Chen L, Mei Q et al (2018) Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res 142:75–85.  https://doi.org/10.1016/j.watres.2018.05.034 CrossRefGoogle Scholar
  10. 10.
    Gies EA, LeNoble JL, Noël M et al (2018) Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar Pollut Bull 133:553–561.  https://doi.org/10.1016/j.marpolbul.2018.06.006 CrossRefGoogle Scholar
  11. 11.
    Tran NH, Reinhard M, Gin KYH (2018) Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res 133:182–207.  https://doi.org/10.1016/j.watres.2017.12.029 CrossRefGoogle Scholar
  12. 12.
    Hörsing M, Ledin A, Grabic R et al (2011) Determination of sorption of seventy-five pharmaceuticals in sewage sludge. Water Res 45:4470–4482.  https://doi.org/10.1016/j.watres.2011.05.033 CrossRefGoogle Scholar
  13. 13.
    European Commission (1986) Protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off J Eur Communities 4:6–12Google Scholar
  14. 14.
    WDS (2000) Working document on sludge 3rd draft. WDS, BrusselsGoogle Scholar
  15. 15.
    Liang X, Ning X, Chen G et al (2013) Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants. Ecotoxicol Environ Saf 98:128–134.  https://doi.org/10.1016/j.ecoenv.2013.09.012 CrossRefGoogle Scholar
  16. 16.
    Fischer HW, Yokoo Y (2014) Preliminary comparison of radioisotope concentration in sewage sludge after the Fukushima and Chernobyl accidents. Energy Procedia 59:256–262.  https://doi.org/10.1016/j.egypro.2014.10.375 CrossRefGoogle Scholar
  17. 17.
    Krawczyk E, Piñero-García F, Ferro-García MA (2013) Discharges of nuclear medicine radioisotopes in Spanish hospitals. J Environ Radioact 116:93–98.  https://doi.org/10.1016/j.jenvrad.2012.08.011 CrossRefGoogle Scholar
  18. 18.
    Andrés C, Barquero R, Tortosa R et al (2011) 131I activity in urine to the sewer system due to thyroidal treatments. Health Phys 101:S110–S115.  https://doi.org/10.1097/HP.0b013e318209459c CrossRefGoogle Scholar
  19. 19.
    Chang BU, Choi SW, Song MH et al (2011) Medically used radionuclides (131I, 99mTc) in the urban sewage system: the case of the Daejeon metropolitan city, Korea. Radiat Prot Dosim 146:318–321.  https://doi.org/10.1093/rpd/ncr108 CrossRefGoogle Scholar
  20. 20.
    Jiménez F, Debán L, Pardo R et al (2011) Levels of 131I and six natural radionuclides in sludge from the sewage treatment plant of Valladolid, Spain. Water Air Soil Pollut 217:515–521.  https://doi.org/10.1007/s11270-010-0605-8 CrossRefGoogle Scholar
  21. 21.
    Jiménez F, López R, Pardo R et al (2011) The determination and monitoring of 131I activity in sewage treatment plants based on A2/O processes. Radiat Meas 46:104–108.  https://doi.org/10.1016/j.radmeas.2010.07.030 CrossRefGoogle Scholar
  22. 22.
    Cosenza A, Rizzo S, Sansone Santamaria A, Viviani G (2015) Radionuclides in wastewater treatment plants: monitoring of Sicilian plants. Water Sci Technol 71:252–258.  https://doi.org/10.2166/wst.2014.501 CrossRefGoogle Scholar
  23. 23.
    Rose PS, Swanson RL, Cochran JK (2012) Medically-derived 131I in municipal sewage effluent. Water Res 46:5663–5671.  https://doi.org/10.1016/j.watres.2012.07.045 CrossRefGoogle Scholar
  24. 24.
    Ortiz J, Ballesteros L, Zarza I, Serradell V (2004) Radioactivity study in a Sewage Treatment Plant (STP). Radiological Impact Evaluation. In: IRPA Congress 5G (1)Google Scholar
  25. 25.
    Zehringer M (2018) Fate of Radiopharmaceuticals in the Environment. In: Sewage. IntechOpenGoogle Scholar
  26. 26.
    Martínez J, Peñalver A, Baciu T et al (2018) Presence of artificial radionuclides in samples from potable water and wastewater treatment plants. J Environ Radioact 192:187–193.  https://doi.org/10.1016/j.jenvrad.2018.06.024 CrossRefGoogle Scholar
  27. 27.
    Souti M-E, Hormann V, Toma E, Fischer HW (2014) I-131 Extraction from fresh water and Sewage plant effluent. Ext Abstr 3:4–7Google Scholar
  28. 28.
    Hormann V, Fischer HW (2017) The physicochemical distribution of 131I in a municipal wastewater treatment plant. J Environ Radioact 178–179:55–62.  https://doi.org/10.1016/j.jenvrad.2017.07.008 CrossRefGoogle Scholar
  29. 29.
    Hormann V, Fischer HW (2018) A simple compartment model for the dynamical behaviour of medically-derived 131I in a municipal wastewater treatment plant. Environ Sci Technol.  https://doi.org/10.1021/acs.est.8b01553 Google Scholar
  30. 30.
    Avila R, Cruz I De, Sundell-Bergman S, Hasselblad S (2007) Radiological consequences of radionuclide releases to sewage systems from hospitals in Sweden. SSI rapport: 2007:10Google Scholar
  31. 31.
    Punt A, Millward G, Gardner M (2007) Science Report - SC020150/SR1 Radionuclide partitioning to sewage sludge—a laboratory investigation. Environment Agency, BristolGoogle Scholar
  32. 32.
    Schomäcker K, Fischer T, Zimmermanns B et al (2017) Retention efficacy and release of radioiodine in fume hoods. J Environ Radioact 166:175–180.  https://doi.org/10.1016/j.jenvrad.2016.01.006 CrossRefGoogle Scholar
  33. 33.
    AENOR (2016) Water quality. Determination of the activity concentration of radionuclides. Method by high resolution gamma-ray spectrometry (ISO 10703:2007). AENOR, MadridGoogle Scholar
  34. 34.
    Kelly M, Thorne M (2003) Radionuclides handbook, R&D Technical Report P3-101/SP1b. Environment AgencyGoogle Scholar
  35. 35.
    Baeza A, Miró C, Soleto C (2004) Spectrometric determination of low activities of gamma emitters in water samples. Appl Radiat Isot Isot 61:203–206.  https://doi.org/10.1016/j.apradiso.2004.03.046 CrossRefGoogle Scholar
  36. 36.
    APHA (2012) Standard methods for the examinaton of water and wastewater, 22nd edn. APHA, AWWA, WEF, Washington, DCGoogle Scholar
  37. 37.
    Gong T, Zhang X (2013) Determination of iodide, iodate and organo-iodine in waters with a new total organic iodine measurement approach. Water Res 47:6660–6669.  https://doi.org/10.1016/j.watres.2013.08.039 CrossRefGoogle Scholar
  38. 38.
    Santschi PH, Xu C, Zhang S et al (2017) Iodine and plutonium association with natural organic matter: a review of recent advances. Appl Geochem 85:121–127.  https://doi.org/10.1016/j.apgeochem.2016.11.009 CrossRefGoogle Scholar
  39. 39.
    Gonzalez A, Hendriks ATWM, van Lier JB, de Kreuk M (2018) Pre-treatments to enhance the biodegradability of waste activated sludge: elucidating the rate limiting step. Biotechnol Adv 36:1434–1469.  https://doi.org/10.1016/j.biotechadv.2018.06.001 CrossRefGoogle Scholar
  40. 40.
    Zia S, Graham D, Dolfing J (2013) Wastewater treatment: biological. In: Jørgensen SE (ed) Encyclopedia of environmental management. Taylor & Francis, Boca Raton, pp 2645–2656Google Scholar
  41. 41.
    Peces M, Astals S, Mata-Alvarez J (2014) Assessing total and volatile solids in municipal solid waste samples. Environ Technol 35:3041–3046.  https://doi.org/10.1080/09593330.2014.929182 CrossRefGoogle Scholar
  42. 42.
    Masson O, Steinhauser G, Wershofen H et al (2018) Potential Source Apportionment and Meteorological Conditions Involved in Airborne 131I Detections in January/February 2017 in Europe. Environ Sci Technol 52:8488–8500.  https://doi.org/10.1021/acs.est.8b01810 CrossRefGoogle Scholar
  43. 43.
    Kitto ME, Fielman EM, Fielman SE, Gillen EA (2005) Airborne 131I at a background monitoring site. J Environ Radioact 83:129–136.  https://doi.org/10.1016/j.jenvrad.2005.02.008 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Joana Martínez
    • 1
  • Tatiana Baciu
    • 1
  • Alejandra Peñalver
    • 1
  • Carme Aguilar
    • 1
  • Francesc Borrull
    • 1
    Email author
  1. 1.Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili, Unitat de Radioquímica Ambiental i Sanitaria (URAIS), Consorci d’Aigües de Tarragona (CAT)TarragonaSpain

Personalised recommendations