Determination of natural uranium by various analytical techniques in soils of Zacatecas State (Mexico)

  • Edmundo Escareño-JuárezEmail author
  • Rafael Pardo
  • Catalina Gascó-Leonarte
  • Marisol Vega
  • María Isabel Sánchez-Báscones
  • Ana Isabel Barrado-Olmedo


238U is a radionuclide present in the earth’s crust that provides 65.9% of annual average radiation dose and represents 99.27% of total uranium. 238U has been determined in samples from undisturbed topsoil in the Zacatecas State, Mexico, using several analytical techniques. ICP-MS and α-spectrometry produced the most reliable results. Uranium concentrations found in topsoil samples (0.4–3.7 mg kg−1) were similar to its average crustal abundance (2.8 mg kg−1) and indicate high homogeneity without evidence of enrichment. The average concentration of 2.1 mg kg−1 can be established as uranium background level in the topsoil of Zacatecas (Mexico).


238Topsoil Background concentration ICP-MS α-Spectrometry Enrichment factor 



The authors are grateful to Rocio García Rodríguez, the Faculty of Sciences and the Laboratory of Instrumental Techniques (LTI) of the University of Valladolid (Spain), the Environmental Radioactivity and Radiological Surveillance Unit of the Center for Energy, Environment and Technology Research (CIEMAT, Spain), the Carolina Foundation (Spain), the Ministry of Foreign Affairs of Mexico and the Autonomous University of Zacatecas (Mexico), for their collaboration in carrying out this work.

Compliance with ethical statement

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.


  1. 1.
    Vandenhove H, Hurtgen C, Payne TE (2010) In: Atwood DA (ed) Radionuclides in the environment. Wiley, New YorkGoogle Scholar
  2. 2.
    Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265. CrossRefGoogle Scholar
  3. 3.
    McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:2000GC000109. CrossRefGoogle Scholar
  4. 4.
    Rudnick RL, Gao S (2014) Composition of the continental crust. In: Turekian K, Holland H (eds) Treatise on geochemistry, vol 4, 2nd edn. Elsevier, Amsterdam. Google Scholar
  5. 5.
    Santos JS, Teixeira LSG, Araújo RGO, Fernandes AP, Korn MGA, Ferreira SLC (2011) Optimization of the operating conditions using factorial designs for determination of uranium by inductively coupled plasma optical emission spectrometry. Microchem J 97:113–117. CrossRefGoogle Scholar
  6. 6.
    WHO (2011) Guidelines for drinking-water quality. Guidelines for drinking-water quality, 4th edn. World Health Organization: Geneva, Switzerland.;jsessionid=708454E890F22E255EA3D95BA676BC72?sequence=1. Accessed 09 Jan 2019
  7. 7.
    USDOHAHS (2013) Toxicological profile for uranium. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta, USA. Accessed 09 Jan 2019
  8. 8.
    Betti M, Aldave de las Heras L (2004) Glow discharge spectrometry for the characterization of nuclear and radioactively contaminated environmental samples. Spectrochim Acta B 59:1359–1376. CrossRefGoogle Scholar
  9. 9.
    Maher K, Bargar JR, Brown GE (2013) Environmental speciation of actinides. Inorg Chem 52:3510–3532. CrossRefGoogle Scholar
  10. 10.
    UNSCEAR (2017) Sources, effects and risks of ionizing radiation, UNSCEAR 2016 report to the General Assembly, with scientific annexes. United Nations Scientific Committee on the Effects of Atomic Radiation, New York. Accessed 09 Jan 2019
  11. 11.
    Santos JS, Teixeira LSG, dos Santos WNL, Lemos VA, Godoy JM, Ferreira SLC (2010) Uranium determination using atomic spectrometric techniques: an overview. Anal Chim Acta 674:143–156. CrossRefGoogle Scholar
  12. 12.
    Doyle JL, Kuhn K, Byerly B, Colletti L, Fulwyler J, Garduno K, Keller R, Lujan E, Martinez A, Myers S, Porterfield D, Spencer K, Stanley F, Townsend L, Thomas M, Walker L, Xu N, Tandon L (2016) Nuclear forensic analysis of a non-traditional actinide sample. Talanta 159:200–207. CrossRefGoogle Scholar
  13. 13.
    Boryło A (2013) Determination of uranium isotopes in environmental samples. J Radioanal Nucl Chem 295:621–631. CrossRefGoogle Scholar
  14. 14.
    Karpas Z (2015) Analytical chemistry of uranium: environmental, forensic, nuclear and toxicological applications, 1st edn. CRC Press, Boca RatonGoogle Scholar
  15. 15.
    Becker JS (2005) Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides. Int J Mass Spectrom 242:183–195. CrossRefGoogle Scholar
  16. 16.
    INAFED (2018) Instituto Nacional para el Federalismo y el Desarrollo Municipal. Accessed 23 Jul 2018 (in Spanish)
  17. 17.
    Eichrom Technologies LLC (2014) Uranium in soil. Analytical procedure ACS07, rev. 1.6. Accessed 10 Jan 2019
  18. 18.
    Eichrom Technologies LLC (2014) Analytical procedure SPA02, rev. 1.0. Electrodeposition of actinides (Source preparation). Accessed 10 Jan 2019
  19. 19.
    Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Isotopic compositions of the elements 2013 (IUPAC technical report). Pure Appl Chem 88:293–306. Google Scholar
  20. 20.
    ISO 11929:2010 Determination of the characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation—fundamentals and application. International Organization for Standardization, Technical Committee ISO/TC 85/SC 2 Radiological protectionGoogle Scholar
  21. 21.
    JCGM 100:2008 GUM 1995 with minor corrections (2008) Evaluation of measurement data—guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology (JCGM/WG 1)Google Scholar
  22. 22.
    Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. J Geol 2:108–118Google Scholar
  23. 23.
    Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627. CrossRefGoogle Scholar
  24. 24.
    Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238. CrossRefGoogle Scholar
  25. 25.
    Buat-Menard P, Chesselet R (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci Lett 42:399–411. CrossRefGoogle Scholar
  26. 26.
    Lee PK, Touray JC, Baillif P, Ildefonse JP (1997) Heavy metal contamination of settling particles in a retention pond along the A-71 motorway in Sologne, France. Sci Total Environ 201:1–15. CrossRefGoogle Scholar
  27. 27.
    Wang J, Liu G, Lu L, Zhang J, Liu H (2015) Geochemical normalization and assessment of heavy metals (Cu, Pb, Zn, and Ni) in sediments from the Huaihe River, Anhui, China. CATENA 129:30–38. CrossRefGoogle Scholar
  28. 28.
    UNSCEAR (2000) Sources and effects of ionizing radiation, UNSCEAR 2000 Report to the General Assembly, vol. I. United Nations Scientific Committee on the Effects of Atomic Radiation, New York. Accessed 09 Jan 2019
  29. 29.
    Jovanovic SV, Pan P, Wong L (2012) Bioaccessibility of uranium in soil samples from Port Hope, Ontario, Canada. Environ Sci Technol 46:9012–9018. CrossRefGoogle Scholar
  30. 30.
    Colmenero Sujo L, Montero Cabrera ME, Villalba L, Rentería Villalobos M, Torres Moye E, García León M, García-Tenorio R, Mireles García F, Herrera Peraza EF, Sánchez Aroche D (2004) Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Aldama, Chihuahua, Mexico. J Environ Radioact 77:205–219. CrossRefGoogle Scholar
  31. 31.
    Bigalke M, Ulrich A, Rehmus A, Keller A (2017) Accumulation of cadmium and uranium in arable soils in Switzerland. Environ Pollut 221:85–93. CrossRefGoogle Scholar
  32. 32.
    Mireles F, Davila JI, Pinedo JL, Reyes E, Speakman RJ, Glascock MD (2012) Assessing urban soil pollution in the cities of Zacatecas and Guadalupe, Mexico by instrumental neutron activation analysis. Microchem J 103:158–164. CrossRefGoogle Scholar
  33. 33.
    Santawamaitre T, Malain D, Al-Sulaiti HA, Bradley DA, Matthews MC, Regan PH (2014) Determination of 238U, 232Th and 40K activity concentrations in riverbank soil along the Chao Phraya river basin in Thailand. J Environ Radioact 138:80–86. CrossRefGoogle Scholar
  34. 34.
    Haribala B, Hu C, Wang G, Xu X, Zhang S (2016) Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China. Ecotoxicol Environ Safe 130:185–192. CrossRefGoogle Scholar
  35. 35.
    Hirose K, Kikawada Y, Igarashi Y, Fujiwara H, Jugder D, Matsumoto Y, Oi T, Nomura M (2017) Plutonium, 137Cs and uranium isotopes in Mongolian surface soils. J Environ Radioact 166:97–103. CrossRefGoogle Scholar
  36. 36.
    Baykara O, Doğru M (2009) Determination of terrestrial gamma, 238U, 232Th and 40K in soil along fracture zones. Radiat Meas 44:116–121. CrossRefGoogle Scholar
  37. 37.
    Santos-Francés F, Gil Pacheco E, Martínez-Graña A, Alonso Rojo P, Avila Zarza C, García Sánchez A (2018) Concentration of uranium in the soils of the west of Spain. Environ Pollut 236:1–11. CrossRefGoogle Scholar
  38. 38.
    Abreu MM, Magalhães MCF (2017) Assessment and reclamation of soils from uranium mining areas: case studies from Portugal. In: Bech J, Bini C, Pashkevich M (eds) Assessment, restoration and reclamation of mining influenced soils, 1st edn. Elsevier, AmsterdamGoogle Scholar
  39. 39.
    Pourcelot L, Calmon P, Chabaux F, Conil S, Galy C, Granet M, Lascar E, Leclerc E, Perrone T, Redon PO, Rihs S (2017) Comparative repartition of 226Ra, 238U, 234U, 230Th and 232Th in a variety of soils sampled from geological formations in the NE of the Basin of Paris. Appl Geochem 84:314–324. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, Faculty of SciencesUniversity of ValladolidValladolidSpain
  2. 2.Unit of Environmental Radioactivity and Radiological SurveillanceCenter for Energy, Environment and Technology Research (CIEMAT)MadridSpain

Personalised recommendations