Advertisement

Application of zeolitic rocks in the environment: assessment of radiation due to natural radioactivity

  • A. Kalaitzis
  • S. StoulosEmail author
  • V. Melfos
  • N. Kantiranis
  • A. Filippidis
Article
  • 31 Downloads

Abstract

The 238U, 226Ra, 210Pb, 228Ra, 228Th and 40K concentrations have been measured beside to radon emanation factor due to sample granulometric using γ-spectrometry. The radiological hazards of zeolitic rocks application in the environment as soil improvements, diet supplements and building materials have been studied. No γ-radiation hazards occur for soil improvements since up to 0.13 mSv year−1 estimate. No radiation hazards arise for diet supplements since 0.21 μSv day−1 g−1 of zeolite intake is estimated. Instead, the application as cement and bricks give external annual effective dose up to 1.19 mSv, while the internal radiation rises to 3.45 mSv.

Keywords

Zeolitic rock Natural radioactivity Radon emanation Radiation exposure 

Notes

Acknowledgements

The corresponding author would like to express his gratitude to Dr. Tony Lőfqvist (Mark och Miljökontroll AB, Billdal, Sweden) for his constrictive comments and suggestions during the workshop IWEANR 2017.

References

  1. 1.
    Ming DW, Mumpton FA (1995) Natural Zeolites ‘93: occurrence, properties, use. International committee on Natural Zeolites, New YorkGoogle Scholar
  2. 2.
    Bish DL, Ming DW (2001) Natural zeolites: occurrence, properties, applications. Mineralogical Society of America, WashingtonCrossRefGoogle Scholar
  3. 3.
    Auerback SM, Carrado KM, Dutta PK (2003) Handbook of zeolite science and technology. Marcel Dekker Inc, New YorkCrossRefGoogle Scholar
  4. 4.
    Kirov GN, Filippidis A, Tsirambides A, Tzvetanov RG, Kassoli-Fournaraki A (1990) Zeolite-bearing rocks in Petrota area (Eastern Rhodope Massif, Greece). Geol Rhodopica 2:500–511Google Scholar
  5. 5.
    Filippidis A, Godelitsas A, Charistos D, Misaelides P, Kassoli-Fournaraki A (1996) The chemical behavior of natural zeolites in aqueous environments: interactions between low-silica zeolites and 1 M NaCl solutions of different initial pH-values. Appl Clay Sci 11:199–209CrossRefGoogle Scholar
  6. 6.
    Kantiranis N, Chrissafis C, Filippidis A, Paraskevopoulos K (2006) Thermal distinction of HEU-type mineral phases contained in Greek zeolite-rich volcaniclastic tuffs. Eur J Miner 18(4):509–516CrossRefGoogle Scholar
  7. 7.
    Baerlocher Ch, McCuster LB, Olson DH (2007) Atlas of zeolite framework types. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Mitchell S, Michels NL, Kunze K, Perez Ramirez J (2012) Visualization of hierarchically structured zeolite bodies from macro to nano length scales. Nat Chem 4:825–831CrossRefGoogle Scholar
  9. 9.
    Misaelides P, Godelitsas A, Filippidis A, Charistos D, Anousis I (1995) Thorium and uranium uptake by natural zeolitic materials. Sci Total Environ 173:237–246CrossRefGoogle Scholar
  10. 10.
    Filippidis A, Kantiranis N (2007) Experimental neutralization of lake and stream waters from N. Greece using domestic HEU-type rich natural zeolitic material. Desalination 213:47–55CrossRefGoogle Scholar
  11. 11.
    Filippidis A (2010) Environmental, industrial and agricultural applications of Hellenic Natural Zeolite. Hell J Geosci 45:91–100Google Scholar
  12. 12.
    Kantiranis N, Sikalidis K, Godelitsas A, Squires C, Papastergios G, Filippidis A (2011) Extra-framework cation release from heulandite-type rich tuffs on exchange with NH4 +. J Environ Manag 92:1569–1576CrossRefGoogle Scholar
  13. 13.
    Filippidis A (2016) Applications of the Hellenic Natural Zeolite (HENAZE) and specifications of zeolitic tuffs. Bull Geol Soc Greece 50(4):1809–1819CrossRefGoogle Scholar
  14. 14.
    Filippidis A, Tziritis E, Kantiranis N, Tzamos E, Gamaletsos P, Papastergios G, Filippidis S (2016) Application of Hellenic Natural Zeolite in Thessaloniki industrial area wastewater treatment. Desalination Water Treat 42:19702–19712CrossRefGoogle Scholar
  15. 15.
    Papastergios G, Kantiranis N, Filippidis A, Sikalidis C, Vogiatzis D, Tzamos E (2017) HEU-type zeolitic tuff in fixed bed columns as decontaminating agent for liquid phases. Desalination Water Treat 59:94–98Google Scholar
  16. 16.
    IAEA (1972) Use of local minerals in the treatment of radioactive wastes: Technical Report Series 136Google Scholar
  17. 17.
    Nelson JL, Mercer BW (1963) Ion exchange separation of cesium from alkaline waste supernatant solutions. United States Atomic Energy Commission, HanfordCrossRefGoogle Scholar
  18. 18.
    Buckingham JS (1970) Laboratory evaluation of zeolite material for removing radioactive cesium from alkaline waste solutions. Report ARH-SA-49, United States Atomic Energy Commission, Hanford, WashingtonGoogle Scholar
  19. 19.
    Komarneni S (1985) Philipsite in Cs decontamination and immobilization. Clays Clay Miner 33(2):145–151CrossRefGoogle Scholar
  20. 20.
    Pasini M (1996) Natural zeolites as cation exchangers for environmental protection. Miner Depos 31:563–575CrossRefGoogle Scholar
  21. 21.
    Valcke E, Engels B, Cremers A (1997) The use of zeolites as amendments in radiocaesium- and radiostrontium-contaminated soils: a soil–chemical approach Part I: Cs–K exchange in clinoptilolite and mordenite. Zeolites 18:20–211Google Scholar
  22. 22.
    Massas I, Skarlou V, Haidouti C, Giannakopoulou F (2010) 134Cs uptake by four plant species and Cs–K relations in the soil–plant system as affected by Ca(OH)2 application to an acid soil. J Environ Radioact 101:250–257CrossRefGoogle Scholar
  23. 23.
    Filippidis A, Papastergios G, Kantiranis N, Filippidis S (2015) Neutralization of dyeing industry wastewater and sludge by fixation of pollutants in very high quality HEU-type zeolitic tuff. J Global Ecol Environ 2(4):221–226Google Scholar
  24. 24.
    Allen ER, Ming DW (1995) Recent progress in the use of natural zeolites in agronomy and horticulture. In: Ming DW, Mumpton FA (eds) Natural zeolites ‘93, occurrence, properties, use. International Committee on Natural Zeolites, BrockportGoogle Scholar
  25. 25.
    Chan S, Ji X (1999) Comparative study of the initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes. Cem Concrete Compos 21:293–300CrossRefGoogle Scholar
  26. 26.
    Perraki Th, Kakali G, Kontoleon F (2003) The effect of natural zeolites on the early hydration of portland cement. Microporous Mesoporous Mater 61:205–212CrossRefGoogle Scholar
  27. 27.
    Poon C, Lam L, Kou S, Lin Z (1999) A study on the hydration rate of natural zeolite blended cement pastes. Constr Build Mater 1:427–432CrossRefGoogle Scholar
  28. 28.
    Vogiatzis D, Kantiranis N, Filippidis A, Tzamos E, Sikalidis C (2012) Hellenic natural zeolite as a replacement of sand in mortar: mineralogy monitoring and evaluation of its influence on mechanical properties. Geosciences 2:298–307CrossRefGoogle Scholar
  29. 29.
    Li J, Cao W, Lv XX, Jiang L, Li YJ, Li WZ, Chen SZ, Li XY (2013) Zeolite-based hemostat QuikClot releases calcium into blood and promotes blood coagulation in vitro. Acta Phrmacol Sin 34:367–372CrossRefGoogle Scholar
  30. 30.
    EU Regulation No 651 (2013) Commission Implementing Regulation (EU) No 651/2013 of 9 July 2013 concerning the authorisation of clinoptilolite of sedimentary origin as a feed additive for all animal species and amending Regulation (EC) No 1810/2005Google Scholar
  31. 31.
    Ross M, Nolan RP, Langer AM, Cooper WC (1993) Health effects of various mineral dusts other than asbestos. In: Guthrie Jr GD, Mossman BT (eds) Health effects of mineral dusts. Mineralogical Society of America, Washington DC. Rev Mineral 28:361–407Google Scholar
  32. 32.
    Kalfas CA, Axiotis M, Tsabaris C (2016) SPECTRW: a software package for nuclear and atomic spectroscopy. Nucl Instr Methods A 830:265–275CrossRefGoogle Scholar
  33. 33.
    Manolopoulou M, Stoulos S, Mironaki D, Papastefanou C (2002) A new technique for accurate measurements of Ra-226 with γ-spectroscopy in voluminous samples. Nucl Inst Methods A 508:362–366CrossRefGoogle Scholar
  34. 34.
    Stoulos S, Manolopoulou M, Papastefanou C (2004) Measurement of radon emanation factor from granular samples: effects of additives in cement. Appl Radiat Isot 60:49–54CrossRefGoogle Scholar
  35. 35.
    IAEA (1987) Preparation of gamma-ray spectroscopy reference materials RGU-1, RGTh-1 and RGK-1. Report-IAEA/RL/148, Vienna, AustriaGoogle Scholar
  36. 36.
    Karangelos DJ, Petropoulos NP, Anagnostakis MJ, Hinis EP, Simopoulos SE (2001) Natural radioactivity content and radon exhalation rate and radon exhalation rate measurements of zeolites for project zeogyp board. http://arcas.nuclear.ntua.gr/apache2-default/public/rp_files/zeo1.pdf. Accessed Sept 2018
  37. 37.
    Bossew P (2003) The radon emanation power of building materials, soils and rock. Appl Radiat Isot 53:389–392CrossRefGoogle Scholar
  38. 38.
    Bikit I, Mrdja D, Bikit K, Grujic S, Knezevic D, Forkapic S, Kozmidis-Luburic U (2015) Radon adsorption by zeolite. Radiat Meas 72:70–74CrossRefGoogle Scholar
  39. 39.
    Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95CrossRefGoogle Scholar
  40. 40.
    Krisiuk EM, Tarasov SI, Seamov VP, Shalck NI, Lisachenko EP, Gomelsky LG (1971) A study of radioactivity of building materials. Leningrad Research Institute for Radiation Hygiene, LeningradGoogle Scholar
  41. 41.
    Stranden E (1979) Radioactivity of building materials and the gamma radiation in dwellings. Phys Med Biol 24:921–930CrossRefGoogle Scholar
  42. 42.
    Koblinger L (1984) Mathematical models of external gamma radiation and congruence of measurements. Radiat Prot Dosimetry 7:227–234CrossRefGoogle Scholar
  43. 43.
    CEN (2017) Construction products: dose assessment of emitted gamma radiation. Technical Report CEN/TR 17113, BrusselsGoogle Scholar
  44. 44.
    Stoulos S, Manolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radioact 69:225–240CrossRefGoogle Scholar
  45. 45.
    UNSCEAR (1993) United Nations Scientific Committee on the Effects of Atomic Radiation. New YorkGoogle Scholar
  46. 46.
    ICRP-65 (1994) Protection against Radon-222 at home and at work. Pergamon, OxfordGoogle Scholar
  47. 47.
    Clouvas A, Xanthos S, Antonopoulos-Domis M (2003) Long term measurements of radon equilibrium factor in Greek dwellings. Radiat Prot Dosim 103:269–271CrossRefGoogle Scholar
  48. 48.
    UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation. New YorkGoogle Scholar
  49. 49.
    Anagnostakis MJ, Hinis EP, Simopoulos SE, Angelopoulos MG (1996) Natural radioactivity mapping of Greek surface soils. Environ Int 22:S3–S8CrossRefGoogle Scholar
  50. 50.
    Clouvas A, Xanthos S, Antonopoulos-Domis M (2004) Radiological maps of outdoor and indoor gamma dose rates in Greek urban areas obtained by in situ gamma spectrometry. Radiat Prot Dosim 112:267–275CrossRefGoogle Scholar
  51. 51.
    Costa JC, Borges JAR, Pires LF, Arthur RCJ, Bacchi OOS (2014) Soil mass attenuation coefficient: analysis and evaluation. Ann Nucl Energy 64:206–211CrossRefGoogle Scholar
  52. 52.
    ICRP-119 (2012) Annals of the ICRP. ICRP Publ 41:1–130Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Nuclear and Elementary Particles Physics, School of PhysicsAUTHThessaloníkiGreece
  2. 2.Department of Mineralogy, Petrology and Economic Geology, School of GeologyAUTHThessaloníkiGreece

Personalised recommendations