Homogeneous liquid–liquid extraction of europium from aqueous solution with ionic liquids

  • Ying Dai
  • Bin Cao
  • Shimin Zhong
  • Guanbao Xie
  • Youqun Wang
  • Yuhui Liu
  • Zhibin Zhang
  • Yunhai Liu
  • Xiaohong CaoEmail author


Comparing with the traditionally immiscible two-phase extraction, the homogeneous liquid–liquid extraction technique shows potential in industrial separation engineering due to nearly infinite contact interface. In this work the ionic liquid (IL) compounds such as N-(carboxymethyl)-N,N-dimethylethanaminium bis-trifluoromethane-sulfonimide ([DHbet][Tf2N]) and N-(carboxyethyl)-trimethylammonium bistrifluoromethane-sulfonimide ([THbet][Tf2N]) were synthesized. The homogeneous extraction behaviors of europium with two ILs were studied as functions of solution pH, ionic strength, contact time, and initial europium concentration. The results indicated that both homogeneous extractions were dependent on pH and independent on ionic strength. The extraction capacities for [DHbet][Tf2N] and [THbet][Tf2N] were 3.29 mmol/L and 3.16 mmol/L, respectively. ILs could be recovered using 1.0 M hydrochloric acid. The mole-ratio method indicated the formation of a mononuclear complex between the europium ion and IL. Total europium extraction efficiencies of more than 91% for [DHbet][Tf2N] and more than 90% for [THbet][Tf2N] were obtained by quadruple-stage countercurrent extraction. The result proves the feasibility of the homogeneous liquid–liquid extraction technique as an alternative option for europium separation from aquatic solution.


Homogeneous extraction Europium Complex formation Ionic liquid 



This work was financially supported by the National Natural Science Foundation of China (11605027, 21866003, 41461070, 11475044, 21561002, 21501025, 21761002), the China Postdoctoral Science Foundation (2016M600981) and Natural Science Foundation of Jiangxi Province (No. 20171BAB213020).


  1. 1.
    Wang Y, Liu Z, Li Y, Bai Z, Liu W, Wang Y, Xu X, Xiao C, Sheng D, Diwu J, Su J, Chai Z, Albrecht-Schmitt TE, Wang S (2015) Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J Am Chem Soc 137:6144–6147CrossRefGoogle Scholar
  2. 2.
    Xie J, Wang Y, Liu W, Yin X, Chen L, Zou J, Diwu J, Chai Z, Albrecht-Schmitt TE, Liu G, Wang S (2017) Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework. Angew Chem Int Ed 56(26):7500–7504CrossRefGoogle Scholar
  3. 3.
    Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, Liu S, Zhang L, Gao Y, Chen L, Sheng D, Wang Y, Diwu J, Wang J, Zhou R, Chai Z, Albrecht-Schmitt TE, Liu G, Wang S (2017) Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat Commun 8:1–11CrossRefGoogle Scholar
  4. 4.
    Wu Y, Jiang J, Wang M, Jin M (2011) A fusion-driven subcritical system concept based on viable technologies. Nucl Fusion 51:103036–103042CrossRefGoogle Scholar
  5. 5.
    Xian L, Tian G, Beavers CM, Teat SJ, Shuh DK (2016) Glutarimidedioxime: a complexing and reducing reagent for plutonium recovery from spent nuclear fuel reprocessing. Angew Chem Int Ed 55(15):4671–4673CrossRefGoogle Scholar
  6. 6.
    Rim JH, Armenta CE, Gonzales ER, Ünlü K, Peterson DS (2016) Evaluating bis(2-ethylhexyl) methanediphosphonic acid (H2DEH[MDP]) based polymer ligand film (PLF) for plutonium and uranium extraction. J Radioanal Nucl Chem 307(3):2327–2332CrossRefGoogle Scholar
  7. 7.
    Williams NJ, Dehaudt J, Bryantsev VS, Luo H, Abney CW, Dai S (2017) Selective separation of americium from europium using 2,9-bis(triazine)-1,10-phenanthrolines in ionic liquids: a new twist on an old story. Chem Commun 53(18):2744–2747CrossRefGoogle Scholar
  8. 8.
    Nilsson J, Bauden MP, Nilsson JM, Strand S-E, Elgqvist J (2015) Cancer cell radiobiological studies using in-house-developed α-particle irradiator. Cancer Biother Radiopharm 30(9):386–394CrossRefGoogle Scholar
  9. 9.
    Shu Q, Khayambashi A, Zou Q, Wang X, Wei Y, He L, Tang F (2017) Studies on adsorption and separation characteristics of americium and lanthanides using a silica-based macroporous bi(2-ethylhexyl) phosphoric acid (HDEHP) adsorbent. J Radioanal Nucl Chem 313(1):29–37CrossRefGoogle Scholar
  10. 10.
    Muthukumar K, Lakshmi DS, Gujar RB, Boricha AB, Mohapatra PK, Bajaj HC (2016) Synthesis and characterization of magnetic copper-iron-titanate and uptake studies of americium from nuclear waste solutions. RSC Adv 6(113):111822–111830CrossRefGoogle Scholar
  11. 11.
    Ekberg C, Löfström-Engdahl E, Aneheim E, Foreman MR, Geist A, Lundberg D, Denecked M, Ingmar P (2015) The structures of CyMe4-BTBP complexes of americium(III) and europium(III) in solvents used in solvent extraction, explaining their separation properties. Dalton Trans 42:18395–18402CrossRefGoogle Scholar
  12. 12.
    Chapron S, Marie C, Arrachart G, Miguirditchian M, Pellet-Rostaing S (2015) New insight into the americium/curium separation by solvent extraction using diglycolamides. Solvent Extr Ion Exc 33(3):236–248CrossRefGoogle Scholar
  13. 13.
    Jensen MP, Chiarizia R, Ulicki JS, Spindlerb BD, Murphyb DJ, Mahmun Hossainb M, RocaSabioc A, Andrés B, Rodríguez-Blas T (2015) Solvent extraction separation of trivalent americium from curium and the lanthanides. Solvent Extr Ion Exc 33(4):329–345CrossRefGoogle Scholar
  14. 14.
    Noronha DM, Pius IC, Chaudhury S (2017) Co-precipitation of plutonium(IV) and americium(III) from nitric acid–oxalic acid solutions with bismuth oxalate. J Radioanal Nucl Chem 313(3):523–529CrossRefGoogle Scholar
  15. 15.
    Luo L, Qin X, Wu J, Liang G, Li Q, Liu M, Kang F, Chen G, Li B (2018) Interwoven MoO3@CNT scaffold interlayer for high-performance lithium-sulfur batteries. J Mater Chem A 6(18):8612–8619CrossRefGoogle Scholar
  16. 16.
    Liu S, Liu H, Huang Y, Yang W (2015) Solvent extraction of rubidium and cesium from salt lake brine with t-BAMBP-kerosene solution. Trans Nonferrous Met Soc China 25(1):329–334CrossRefGoogle Scholar
  17. 17.
    Silva M, Fernandes L, Olsina R, Stracchiola D (1997) Cloud point extraction, preconcentration and spectrophotometric determination of erbium(III)-2-(3,5-dichloro-2-pyridylazo)-5-dimethylaminophenol. Anal Chim Acta 342:229–238CrossRefGoogle Scholar
  18. 18.
    Paleologos E, Giokas D, Karayannis M (2005) Micelle-mediated separation and cloud-point extraction. Trends Anal Chem 24(5):426–436CrossRefGoogle Scholar
  19. 19.
    Karavan M, Smirnov I, Kleshnina S, Solovieva S, Kadirov M, Antipin I, Safiullin R, Gorbacheva S, Novikov A (2017) Micelle mediated extraction of americium and europium by calix [4] arene phosphine oxides from nitric acid media. J Radioanal Nucl Chem 311(1):599–609CrossRefGoogle Scholar
  20. 20.
    Yuan LY, Liao XH, Liu ZR, Chai ZF, Shi WQ (2017) U(VI) extraction by 8-hydroxyquinoline: a comparison study in ionic liquid and in dichloromethane. Radiochim Acta 105(6):441–448CrossRefGoogle Scholar
  21. 21.
    Yuan LY, Sun M, Mei L, Wang L, Zheng LR, Gao ZQ, Zhang J, Zhao YL, Chai ZF, Shi WQ (2015) New insight of coordination and extraction of uranium(VI) with N-donating ligands in room temperature ionic liquids: N,N′-Diethyl-N,N′-ditolyldipicolinamide as a case study. Inorg Chem 54:1992–1999CrossRefGoogle Scholar
  22. 22.
    Chemat F, Fabiano-Tixier AS, Vian MA, Allaf T, Vorobiev E (2015) Solvent-free extraction of food and natural products. TrAC-Trends Anal Chem 71:157–168CrossRefGoogle Scholar
  23. 23.
    Asrami MR, Saien J (2018) Salting-out effect on extraction of phenol from aqueous solutions by [Hmim][NTf2] ionic liquid: experimental investigations and modeling. Sep Purif Technol 204:175–184CrossRefGoogle Scholar
  24. 24.
    Wilson M, Kore R, Ritchie AW, Fraser RC, Beaumont SK, Srivastava R, Badyal JPS (2018) Palladium–poly(ionic liquid) membranes for permselective sonochemical flow catalysis. Colloid Surf A 545:78–85CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Liu Y, Ma X, Ma X, Wang B, Li H, Huang Y, Liu C (2018) An environmentally friendly approach to the green synthesis of azo dyes with aryltriazenes via ionic liquid promoted C–N bonds formation. Dyes Pigm 158:438–444CrossRefGoogle Scholar
  26. 26.
    Li K, Qian L, Song W, Zhu M, Zhao Y, Miao Z (2018) Preparation of an ionic liquid-based hydrogel with hyperbranched topology for efficient removal of Cr(VI). J Mater Sci 53(20):14821–14833CrossRefGoogle Scholar
  27. 27.
    Han M, Li Y, Gu Z, Shi H, Chen C, Wang Q, Wan H, Guan G (2018) Immobilization of thiol-functionalized ionic liquids onto the surface of MIL-101(Cr) frameworks by S–Cr coordination bond for biodiesel production. Colloid Surf A 553:593–600CrossRefGoogle Scholar
  28. 28.
    Vaezzadeh M, Shemirani F, Majidi B (2012) Determination of silver in real samples using homogeneous liquid-liquid microextraction based on ionic liquid. J Anal Chem 67(1):28–34CrossRefGoogle Scholar
  29. 29.
    Onghena B, Binnemans K (2015) Recovery of scandium(III) from aqueous solutions by solvent extraction with the functionalized ionic liquid betainium bis(trifluoromethylsulfonyl) imide. Ind Eng Chem Res 54(6):1887–1898CrossRefGoogle Scholar
  30. 30.
    Kelley C, Mielke RE, Dimaquibo D, Curtis AJ, Dewitt JG (1999) Adsorption of Eu(III) onto roots of water hyacinth. Environ Sci Technol 33(9):1439–1443CrossRefGoogle Scholar
  31. 31.
    Peng J, Song Y, Yuan P, Cui X, Qiu G (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161(2–3):633–640CrossRefGoogle Scholar
  32. 32.
    Wang C, Lan J, Feng Y, Wei Y, Zhao Y, Chai Z, Shi W (2014) Extraction complexes of Pu(IV) with carbamoylmethylphosphine oxide ligands: a relativistic density functional study. Radiochim Acta 102(1–2):77–86Google Scholar
  33. 33.
    Sheng G, Yang S, Zhao D, Sheng J, Wang X (2012) Adsorption of Eu(III) on titanate nanotubes studied by a combination of batch and EXAFS technique. Sci China Chem 55(1):182–194CrossRefGoogle Scholar
  34. 34.
    Tan X, Fang M, Li J, Lu Y, Wang X (2009) Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mater 168(1):458–465CrossRefGoogle Scholar
  35. 35.
    Mori T, Takao K, Sasaki K, Suzuki T, Arai T, Ikeda Y (2014) Homogeneous liquid–liquid extraction of U(VI) from HNO3 aqueous solution to betainium bis(trifluoromethylsulfonyl)imide ionic liquid and recovery of extracted U(VI). Sep Purif Technol 155:133–138CrossRefGoogle Scholar
  36. 36.
    Wang X, Chen C, Du J, Tan X, Xu D, Yu S (2005) Effect of pH and aging time on the kinetic dissociation of 243Am(III) from humic acid-coated γ-Al2O3: a chelating resin exchange study. Environ Sci Technol 39(18):7084–7088CrossRefGoogle Scholar
  37. 37.
    Yang X, Yang S, Yang S, Hu J, Tan X, Wang X (2011) Effect of pH, ionic strength and temperature on sorption of Pb(II) on NKF-6 zeolite studied by batch technique. Chem Eng J 168(1):86–93CrossRefGoogle Scholar
  38. 38.
    Fan Q, Shao D, Lu Y, Wu W, Wang X (2009) Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na-attapulgite. Chem Eng J 150(1):188–195CrossRefGoogle Scholar
  39. 39.
    Tan C, Zhang X, Cao S, Li S, Guo H, Yuan Tian, Chen D, Tian W, Wang L, Zhi Q (2018) Solvent extraction of americium(III) and europium(III) with 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl) pyridine in ionic liquids: experimental study and molecular dynamics simulation. Sep Purif Technol 192:302–308CrossRefGoogle Scholar
  40. 40.
    Racheva R, Rahlf AF, Wenzel D, Müllera C, Kernerc M, Luinstrab GA, Smirnovaa I (2018) Aqueous food-grade and cosmetic-grade surfactant systems for the continuous countercurrent cloud point extraction. Sep Purif Technol 202:76–85CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Ying Dai
    • 1
    • 2
  • Bin Cao
    • 1
    • 2
  • Shimin Zhong
    • 2
  • Guanbao Xie
    • 2
  • Youqun Wang
    • 1
    • 2
  • Yuhui Liu
    • 1
    • 2
  • Zhibin Zhang
    • 1
    • 2
  • Yunhai Liu
    • 1
    • 2
  • Xiaohong Cao
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Nuclear Resources and EnvironmentEast China University of TechnologyNanchangChina
  2. 2.School of Chemistry, Biological and Materials SciencesEast China University of TechnologyNanchangChina

Personalised recommendations