Advertisement

Thorium adsorption on graphene oxide nanoribbons/manganese dioxide composite material

  • Taoyuan Xiu
  • Zhirong LiuEmail author
  • Yun WangEmail author
  • Peng Wu
  • Ying Du
  • Zhiwang Cai
Article
  • 28 Downloads

Abstract

A functional graphene oxide nanoribbons/manganese dioxide composite material (MnO2-GONRs) was synthesized by hydrothermal method using graphene oxide nanoribbons (GONRs) as raw material which were formed by longitudinal unzipping of multi-walled carbon nanotubes with KMnO4 and H2SO4. The microstructure of MnO2-GONRs was characterized by SEM and FT-IR. The various factors affecting the adsorption of Th(IV) in aqueous solution such as pH, solid–liquid ratio, contact time, initial concentration and temperature were investigated by batch static adsorption experiments, and the adsorption mechanism is also discussed. The results showed that MnO2-GONRs had a good adsorption effect on Th(IV) with a maximum adsorption of 166.11 mg/g.

Keywords

Graphene oxide nanoribbons Manganese dioxide Adsorption Thorium (IV) 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21601033, 21866006, 11875105), and Jiangxi Province Key Subjects Academy and Technique Leaders Funding Project (20172BCB22020).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts interest.

References

  1. 1.
    Arnold J, Gianetti TL, Kashtan Y (2014) Thorium lends a fiery hand. Nat Chem 6(6):554CrossRefGoogle Scholar
  2. 2.
    Ashley SF, Parks GT, Nuttall WJ, Boxall C, Grimes RW (2012) Thorium fuel has risks. Nature 492(7427):31–33CrossRefGoogle Scholar
  3. 3.
    Jain VK, Pandya RA, Pillai SG, Shrivastav PS (2006) Simultaneous preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using a chelating calix[4]arene anchored chloromethylated polystyrene solid phase. Talanta 70(2):257–266CrossRefGoogle Scholar
  4. 4.
    Yousefi SR, Ahmadi SJ, Shemirani F, Jamali MR, Salavati-Niasari M (2009) Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination. Talanta 80(1):212–217CrossRefGoogle Scholar
  5. 5.
    Kaynar UH, Sabikoglu I, Kaynar SC, Eral M (2016) Modeling of thorium (IV) ions adsorption onto a novel adsorbent material silicon dioxide nano-balls using response surface methodology. Appl Radiat Isot 115:280–288CrossRefGoogle Scholar
  6. 6.
    Li T, Chen Q, Zhou L, Le Z, Wang Y, Liu Z, Adesina AA (2017) Efficient sorption of Th(IV) from aqueous solutions onto magnetic chitosan nano-particles functionalized with alanine and valine. J Radioanal Nucl Chem 314(2):1083–1093CrossRefGoogle Scholar
  7. 7.
    Guixia Z, Xiubing H, Zhenwu T, Qifei H, Fenglei N, Xiangke W (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem 9:3562–3582CrossRefGoogle Scholar
  8. 8.
    Pengcheng G, Sai Z, Xing L, Xiangxue W, Tao W, Riffat J, Ahmed A, Tasawar H, Xiangke W (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505CrossRefGoogle Scholar
  9. 9.
    Jie L, Xiangxue W, Guixia Z, Changlun C, Zhifang C, Ahmed A, Tasawar H, Xiangke W (2018) Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47:2322–2356CrossRefGoogle Scholar
  10. 10.
    Iida Y, Yamaguchi T, Tanaka T, Hemmi K (2016) Sorption behavior of thorium onto granite and its constituent minerals. J Nucl Sci Technol 53(10):1573–1584CrossRefGoogle Scholar
  11. 11.
    Pamukoglu MY, Kirkan B, Senyurt M (2017) Removal of thorium(IV) from aqueous solution by biosorption onto modified powdered waste sludge: experimental design approach. J Radioanal Nucl Chem 314(1):343–352CrossRefGoogle Scholar
  12. 12.
    Huang G, Chen Z, Wang L, Lv T, Shi J (2016) Removal of thorium(IV) from aqueous solution using magnetic ion-imprinted chitosan resin. J Radioanal Nucl Chem 310(3):1265–1272CrossRefGoogle Scholar
  13. 13.
    Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination-an overview. Talanta 68(4):1047–1064CrossRefGoogle Scholar
  14. 14.
    Shehata FA, Attallah MF, Borai EH, Hilal MA, Abo-Aly MM (2010) Sorption reaction mechanism of some hazardous radionuclides from mixed waste by impregnated crown ether onto polymeric resin. Appl Radiat Isot 68:239–249CrossRefGoogle Scholar
  15. 15.
    Zhang X, Jiao C, Wang J, Liu Q, Li R, Yang P, Zhang M (2012) Removal of uranium(VI) from aqueous solutions by magnetic Schiff base: kinetic and thermodynamic investigation. Chem Eng J 198–199:412–419CrossRefGoogle Scholar
  16. 16.
    Yang ST, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A (2010) Folding/aggregation of graphene oxide and its application in Cu2+ removal. J Colloid Interface Sci 351(1):122–127CrossRefGoogle Scholar
  17. 17.
    Wang H, Yuan X, Wu Y, Huang H, Zeng G, Liu Y, Wang X, Lin N, Qi Y (2013) Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl Surf Sci 279:432–440CrossRefGoogle Scholar
  18. 18.
    Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240):877–880CrossRefGoogle Scholar
  19. 19.
    Johnson BE, Santschi PH, Chuang CY, Otosaka S, Addleman RS, Douglas M, Rutledge RD, Chouyyok W, Davidson JD, Fryxell GE, Schwantes JM (2012) Collection of lanthanides and actinides from natural waters with conventional and nanoporous sorbents. Environ Sci Technol 46(20):11251–11258CrossRefGoogle Scholar
  20. 20.
    Kim EJ, Lee CS, Chang YY, Chang YS (2013) Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces 5(19):9628–9634CrossRefGoogle Scholar
  21. 21.
    Wang Z, Lee SW, Catalano JG, Lezama-Pacheco JS, Bargar JR, Tebo BM, Giammar DE (2013) Adsorption of uranium(VI) to manganese oxides: x-ray absorption spectroscopy and surface complexation modeling. Environ Sci Technol 47(2):850–858CrossRefGoogle Scholar
  22. 22.
    Pan N, Li L, Ding J, Li S, Wang R, Jin Y, Wang X, Xia C (2016) Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI). J Hazard Mater 309:107–115CrossRefGoogle Scholar
  23. 23.
    Hosseini MS, Abedi F (2015) Comparison of adsorption behavior of Th(IV) and U(VI) on mixed-ligands impregnated resin containing antraquinones with that conventional one. J Radioanal Nucl Chem 303(3):2173–2183Google Scholar
  24. 24.
    Pathak SK, Tripathi SC, Singh KK, Mahtele AK, Kumar M, Gandhi PM (2014) Removal of americium from aqueous nitrate solutions by sorption onto PC88A-impregnated macroporous polymeric beads. J Hazard Mater 278:464–473CrossRefGoogle Scholar
  25. 25.
    Ghaedi AM, Ghaedi M, Vafaei A, Iravani N, Keshavarz M, Rad M, Tyagi I, Agarwal S, Gupta VK (2015) Adsorption of copper (II) using modified activated carbon prepared from Pomegranate wood: optimization by bee algorithm and response surface methodology. J Mol Liq 206:195–206CrossRefGoogle Scholar
  26. 26.
    Kaynar UH, Ayvacikli M, Hicsonmez U, Kaynar SC (2015) Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: isotherms, kinetic and thermodynamic studies. J Environ Radioact 150:145–151CrossRefGoogle Scholar
  27. 27.
    Xu Q-H, Pan D-Q, Wu W-S (2015) Effects of pH, ionic strength, humic substances and temperature on Th(IV) sorption onto ZSM-5. J Radioanal Nucl Chem 305(2):535–541CrossRefGoogle Scholar
  28. 28.
    Rafiee MA, Lu W, Thomas AV, Zandiatashbar A, Rafiee J, Tour JM, Koratkar NA (2010) Graphene nanoribbon composites. ACS Nano 4(12):7415–7420CrossRefGoogle Scholar
  29. 29.
    Fan F-L, Qin Z, Bai J, Rong W-D, Fan F-Y, Tian W, Wu X-L, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46CrossRefGoogle Scholar
  30. 30.
    Gu Z, Wang Y, Tang J, Yang J, Liao J, Yang Y, Liu N (2015) The removal of uranium(VI) from aqueous solution by graphene oxide–carbon nanotubes hybrid aerogels. J Radioanal Nucl Chem 303(3):1835–1842Google Scholar
  31. 31.
    Maiti S, Pramanik A, Mahanty S (2014) Interconnected network of MnO2 nanowires with a “cocoonlike” morphology: redox couple-mediated performance enhancement in symmetric aqueous supercapacitor. ACS Appl Mater Interfaces 6(13):10754–10762CrossRefGoogle Scholar
  32. 32.
    Yang SK, Tan N, Yan XM, Chen F, Long W, Lin YC (2013) Thorium(IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51. Mar Pollut Bull 74(1):213–219CrossRefGoogle Scholar
  33. 33.
    Kaynar UH, Şabikoğlu İ (2018) Adsorption of thorium (IV) by amorphous silica; response surface modelling and optimization. J Radioanal Nucl Chem 318(2):823–834CrossRefGoogle Scholar
  34. 34.
    Li B, Ma L, Tian Y, Yang X, Li J, Bai C, Yang X, Zhang S, Li S, Jin Y (2014) A catechol-like phenolic ligand-functionalized hydrothermal carbon: one-pot synthesis, characterization and sorption behavior toward uranium. J Hazard Mater 271:41–49CrossRefGoogle Scholar
  35. 35.
    Yu X-F, Liu Y-H, Zhou Z-W, Xiong G-X, Cao X-H, Li M, Zhang Z-B (2014) Adsorptive removal of U(VI) from aqueous solution by hydrothermal carbon spheres with phosphate group. J Radioanal Nucl Chem 300(3):1235–1244CrossRefGoogle Scholar
  36. 36.
    Ceren K, Meral E (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396:251–256CrossRefGoogle Scholar
  37. 37.
    Gado MA (2018) Sorption of thorium using magnetic graphene oxide polypyrrole composite synthesized from natural source. Sep Sci Technol 53:2016–2033CrossRefGoogle Scholar
  38. 38.
    Rijith S, Suma Mahesh S, Sumi VS (2018) Synthesis and application of polymer-grafted nanocellulose/graphene oxide nano composite for the selective recovery of radionuclides from aqueous media. Sep Sci Technol.  https://doi.org/10.1080/01496395 Google Scholar
  39. 39.
    Mumei C, Zheng L, Yiyun G, Haogui Z, Shuhua H, Qingnuan L, Lan Z (2018) Adsorption behavior of thorium on N, N, N′, N′-tetraoctyldiglycolamide(TODGA) impregnated graphene aerogel. Talanta 181:311–317CrossRefGoogle Scholar
  40. 40.
    Ning P, Jianguo D, Debin G, Yongdong J, Chuanqin X (2013) Adsorption characteristics of Th(IV) ions on reduced graphene oxide from aqueous solutions. Appl Surf Sci 287:478–483CrossRefGoogle Scholar
  41. 41.
    Yun W, Peng W, Xuewen H, Dingzhong Y, Xiaolan T, Peng X, Zhirong L (2018) Th(IV) sorption on graphene oxide nanoribbons. J East China Univ Technol 41(1):71–77Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Nuclear Resources and EnvironmentEast China University of TechnologyNanchangChina
  2. 2.School of Chemistry, Biological and Materials ScienceEast China University of TechnologyNanchangChina
  3. 3.School of Nuclear Science and EngineeringEast China University of TechnologyNanchangChina

Personalised recommendations