Determination of non-exchangeable organically bound tritium concentration in reference material of pine needles (NIST 1575a)

  • Naofumi AkataEmail author
  • Hideki Kakiuchi
  • Nagayoshi Shima
  • Toshiya Tamari
  • Tibor Kovács


Non-Exchangeable Organically Bound Tritium (Nx-OBT) in a biological reference material: NIST 1575a Pine Needles was determined by radiometry and noble gas mass spectrometry. Nx-OBT concentration ranged from 1.08 to 1.45 Bq L−1-combustion water (CW) (n = 4) with mean value (± S.D.) of 1.25 ± 0.15 Bq L−1-CW in radiometry and ranged from 1.12 to 1.35 Bq L−1-CW (n = 3) with mean value of 1.22 ± 0.25 Bq L−1-CW in mass spectrometry. For the Pine Needles reference material, there is no proposed value about Nx-OBT, but our results showed a good agreement with the data determined by different methods. Thus, it is useful material for the quality control of Nx-OBT measurements.


Non-exchangeable Organically Bound Tritium Reference material Pine needle 



This work was supported by the NIFS budget 10207004KOCA001, 10207004KOCA003 and 10203004ULAA024, and JSPS KAKENHI Grant Number 26340032 and 17K00559. The authors are grateful to Dr. Miklós Hegedűs (Hirosaki University, Japan) for important support and discussion.


  1. 1.
    UNSCEAR (2000) Sources and biological effects of ionizing radiation. Report. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, Volume I: Source, New YorkGoogle Scholar
  2. 2.
    CNSC (2009) Investigation of the Environmental Fate of Tritium in the Atmosphere -Part of the Tritium Studies Project-, INFO0792. Canadian Nuclear Safety Commission, CanadaGoogle Scholar
  3. 3.
    Teegarden BJ (1967) Cosmic-ray production of deuterium and tritium in the earth’s atmosphere. J Geophys Res 72:4863–4868CrossRefGoogle Scholar
  4. 4.
    Uda T, Tanaka M (2009) History of atmospheric tritium concentrations and measurements of tritiated water vapor, hydrogen and methane gases. J Plasma Fusion Res 85:423–425Google Scholar
  5. 5.
    Koarashi J, Mikami S, Akiyama K, Asano T (2005) Determination of chemical forms of 3H released to the atmosphere from the Tokai Reprocessing Plant. J Radioannal Nucl Chem 262:569–572CrossRefGoogle Scholar
  6. 6.
    Chae JS, Lee SK, Kim Y, Lee JM, Cho HJ, Cho YW, Yun JY (2011) Distribution of tritium in water vapor and precipitation around Wolsung nuclear power plant. Rad Prot Dosimet 146:1–3CrossRefGoogle Scholar
  7. 7.
    Kim SB, Baglan N, Davis PA (2013) Current understanding of organically bound tritium (OBT) in the environment. J Environ Radioact 126:83–91CrossRefGoogle Scholar
  8. 8.
    Galeriu D, Melintescu A, Strack S, Atarashi-Andoh M, Kim SB (2013) An overview of organically bound tritium experiments in plants following a short atmospheric HTO exposure. J Environ Radioact 118:40–56CrossRefGoogle Scholar
  9. 9.
    Trivedi A, Galeriu D, Lamothe ES (2000) Dose contribution from methabolized organically bound tritium after chronic tritiated water intakes in human. Health Phys 78:2–7CrossRefGoogle Scholar
  10. 10.
    Akata N, Kakiuchi H, Tamari T, Tanaka M, Kawano T, Miyake H, Uda T, Nishimura K (2015) FWT and OBT concentrations in pine needle samples collected at Toki, Japan (1998–2012). Rad Prot Dosim 167:210–214CrossRefGoogle Scholar
  11. 11.
    Diabate S, Strack S (1993) Organically bound tritium. Health Phys 65:698–712CrossRefGoogle Scholar
  12. 12.
    Bogen DC, Henkel CA, White CGC, Welford GA (1973) A method for the determination of tritium distribution in environmental and biological samples. J Radioannal Nucl Chem 13:335–341CrossRefGoogle Scholar
  13. 13.
    Hisamatsu S, Hashimoto T, Takizawa Y (1990) Tritium concentration in some European foods. J Radioannal Nucl Chem 146:245–253CrossRefGoogle Scholar
  14. 14.
    Momoshima N, Tjahaja PI, Okai T, Takashima Y (1996) Measurement of tritium in forest soil. Radiocarb Liq Scintill Spectrom 1994:89–96Google Scholar
  15. 15.
    Tamari T, Kakiuchi H, Momoshima N, Baglan N, Sugihara S, Uda T (2011) OBT measurement of vegetation by mass spectrometry and radiometry. Fusion Sci Technol 60:1252–1255CrossRefGoogle Scholar
  16. 16.
    Clarke WB, Jenkins WJ, Top Z (1976) Determination of tritium by mass spectrometric measurement of 3He. Int J Appl Rad Isot 27:515–522CrossRefGoogle Scholar
  17. 17.
    Takaoka N, Mizutani Y (1987) Teratogenic 3He in groundwater in Takaoka. Earth Planet Sci Lett 85:74–78CrossRefGoogle Scholar
  18. 18.
    Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graf T, Kipfer R (2000) A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ Sci Technol 34:2042–2050CrossRefGoogle Scholar
  19. 19.
    Jean-Baptiste P, Fourr E, Dapoigny A, Baumier D, Baglan N, Alanic G (2010) 3He mass spectrometry for very low-level measurement of organic tritium in environmental samples. J Environ Radioact 101:185–190CrossRefGoogle Scholar
  20. 20.
    Kakiuchi H, Hasegawa H, Akata N, Tamari T, Kawamura H, Baglan N, Momoshima N, Uda T, Hisamatsu S (2011) Low-level measurement with a noble mass spectrometer for organically bound tritium in environmental samples. Fusion Sci Technol 60:1256–1259CrossRefGoogle Scholar
  21. 21.
    Workman WJG, Kim SB, Kotzer TG (2005) Interlabratory comparison of organically bound tritium measurements in environmental samples. Fusion Sci Technol 48:763–766CrossRefGoogle Scholar
  22. 22.
    Baglan N, Kim SB, Cossonnet C, Croudace IW, Fournier M, Galeriu D, Warwick PE, Momoshima N, Ansoborlo E (2015) Organically bound tritium analysis in environmental samples. Fusion Sci Technol 67:250–253CrossRefGoogle Scholar
  23. 23.
    Baglan N, Cossonnet C, Roche E, Kim SB, Croudace I, Earwick P (2018) Feedback of the third interlaboratory exercised organized on wheat in the framework of the OBT working group. J Environ Radioact 181:52–61CrossRefGoogle Scholar
  24. 24.
    Lee KY, Yoon YY, Yang MK, Shim SK, Seo BK, Chung YS (2001) Investigation of environmental pollution with pine needles by NAA. Anal Sci 17S:1575–1578Google Scholar
  25. 25.
    Takashima Y, Momoshima N, Inoue M, Nakamura Y (1987) Tritium in pine needles and its significant sources in the environment. Appl Radiat Isot 38:255–261CrossRefGoogle Scholar
  26. 26.
    Mackey EA, Becker DA, Oflaz RD, Paul RL, Greenberg RR, Lindstrom RM, Yu LL, Wood LJ, Long SE, Kelly WR, Mann JL, MaxDonald BS, Wilson SA, Brown ZA, Briggs PH, Budhan J (2004) Certification of NIST standard reference material 1575a pine needles and results of an international laboratory comparison, NIST Special Pub 260–156Google Scholar
  27. 27.
    Sucharová J, Suchara I (2006) Determination of 36 elements in plant reference materials with different Si contents by inductively coupled plasma mass spectrometry: comparison of microwave digestions assisted by three types of digestion mixtures. Anal Chim Act 576:163–176CrossRefGoogle Scholar
  28. 28.
    Kakiuchi H (2016) Electrolytic enrichment technique of tritium in water for environmental analysis. J Plasma Fusion Res 92:26–30Google Scholar
  29. 29.
    Michel RL, Jurgens BC, Young MB (2018) Tritium deposition in precipitation in the United States, 1953–2012, U.S. Geol Surv Sci Invest Rep 2018–5086:1–11Google Scholar
  30. 30.
    Akata N, Tanaka M, Takayama S, Kakiuchi H, Tamari T, Sano S (2016) A new pretreatment technique for environmental tritium analysis with microwave heating method. Plasma Fusion Res 11:2405017-1–2405017-4Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Naofumi Akata
    • 1
    Email author
  • Hideki Kakiuchi
    • 2
  • Nagayoshi Shima
    • 3
  • Toshiya Tamari
    • 3
  • Tibor Kovács
    • 4
  1. 1.National Institute for Fusion ScienceNational Institute of Natural SciencesTokiJapan
  2. 2.Department of RadioecologyInstitute for Environmental SciencesAomoriJapan
  3. 3.Kyushu Environmental Evaluation AssociationHigashi-KuJapan
  4. 4.Institute of Radiochemistry and RadioecologyUniversity of PannoniaVeszprémHungary

Personalised recommendations