Advertisement

Comparative cell uptake study of FITC-/177Lu-labeled RM26 monomer, dimer and trimer on PC-3: improving binding affinity of gastrin releasing peptide receptor (GRPR) antagonist via bivalency/trivalency

  • Liangang Zhuo
  • Xia Yang
  • Wei Liao
  • Jing Wang
  • Hailin Wang
  • Minli Lv
  • Guanquan Wang
  • Hu Song
  • Yue Feng
  • Yue Chen
  • Hongyuan Wei
  • Yuchuan Yang
  • Peng Zhao
Article
  • 15 Downloads

Abstract

The gastrin releasing peptide receptors (GRPRs) overexpress in various tumors, which provided the opportunity for GRPR targeted tumor radiological diagnosis and therapy. In recent reports, the GPPR antagonists presented superior specific targeting affinity over the agonists. However, antagonists suffer from many shortcomings regarding their binding affinity and biodistribution properties. In this study, we designed the dimer/trimer antagonists to address the radiotherapy requirements. The results showed both of dimer and trimer RM26 derivatives appeared a progressive improvement. This study provided an efficient strategy to improve the tumor accumulation properties for the GRPR antagonist analogs.

Keywords

RM26 peptide GRPR antagonist 177Lu Peptide multimerization 

Notes

Acknowledgements

This work was funded from the National Natural Science Foundation of China (Grant Nos. 21502178 and 21701155).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Reubi JC (1997) Peptide receptors as molecular targets for cancer diagnosis and therapy. Q J Nucl Med 41:63PubMedGoogle Scholar
  2. 2.
    Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Can Res 59(5):1152–1159Google Scholar
  3. 3.
    Beer M, Montani M, Gerhardt J, Wild PJ, Hany TF, Hermanns T, Müntener M, Kristiansen G (2012) Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates. Prostate 72:318–325PubMedCrossRefGoogle Scholar
  4. 4.
    Mansi R, Fleischmann A, Mäcke HR, Reubi JC (2013) Targeting GRPR in urological cancers—from basic research to clinical application. Nat Rev Urol 10:235–244PubMedCrossRefGoogle Scholar
  5. 5.
    Ananias HJK, Van dH, Marius C, Helfrich W, De Jong IJ (2010) Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer. Prostate 69(10):1101–1108CrossRefGoogle Scholar
  6. 6.
    Sancho V, Di FA, Moody TW, Jensen RT (2011) Bombesin receptor-mediated imaging and cytotoxicity: review and current status. Curr Drug Deliv 8(1):79–134PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Reynolds TS, Bandari RP, Jiang Z, Smith CJ (2016) Lutetium-177 labeled bombesin peptides for radionuclide therapy. Curr Radiopharm 9(1):33–43PubMedCrossRefGoogle Scholar
  8. 8.
    Ferreira CdA, Fuscaldi LL, Townsend DM, Rubello D, Barros ALBd (2017) Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed Pharmacother 87:58–72PubMedCrossRefGoogle Scholar
  9. 9.
    Zarzour JG, Galgano S, McConathy J, Thomas JV, Rais-Bahrami S (2017) Lymph node imaging in initial staging of prostate cancer: an overview and update. World J Radiol 9(10):389–399PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    de Castiglione R, Gozzini L (1996) Bombesin receptor antagonists. Crit Rev Oncol Hematol 24(2):117–151PubMedCrossRefGoogle Scholar
  11. 11.
    Jensen RT, Battey JF, Spindel ER, Benya RV (2008) International union of pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 60(1):1–42PubMedCrossRefGoogle Scholar
  12. 12.
    Maina T, Nock BA, Kulkarni H, Singh A, Baum RP (2017) Theranostic prospects of gastrin-releasing peptide receptor—radioantagonists in oncology. PET Clin 12(3):297–309PubMedCrossRefGoogle Scholar
  13. 13.
    Nock BA, Nikolopoulou A, Galanis A, Cordopatis P, Waser B, Reubi JC, Maina T (2005) Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. J Med Chem 48(1):100–110PubMedCrossRefGoogle Scholar
  14. 14.
    Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, Reubi JC (2008) Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 49(2):318–326PubMedCrossRefGoogle Scholar
  15. 15.
    Mansi R, Wang XJ, Forrer F, Kneifel S, Tamma ML, Waser B, Cescato R, Reubi JC, Maecke HR (2009) Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 15(16):5240–5249PubMedCrossRefGoogle Scholar
  16. 16.
    Yang M, Gao H, Zhou Y, Ma Y, Quan Q, Lang L, Chen K, Niu G, Yan Y, Chen X (2011) F-18-labeled GRPR agonists and antagonists: a comparative study in prostate cancer imaging. Theranostics 1:220–229PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Liu Y, Hu X, Liu H, Bu L, Ma X, Cheng K, Li J, Tian M, Zhang H, Cheng Z (2013) A comparative study of radio labeled bombesin analogs for the PET imaging of prostate cancer. J Nucl Med 54(12):2132–2138PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Mansi R, Abiraj K, Wang X, Tamma ML, Gourni E, Cescato R, Bemdt S, Reubi JC, Maecke HR (2015) Evaluation of three different families of bombesin receptor radioantagonists for targeted imaging and therapy of gastrin releasing peptide receptor (GRP-R) positive tumors. J Med Chem 58(2):682–691PubMedCrossRefGoogle Scholar
  19. 19.
    Fani M, Nicolas GP, Wild D (2017) Somatostatin receptor antagonists for imaging and therapy. J Nucl Med 58(2):61S–66SPubMedCrossRefGoogle Scholar
  20. 20.
    Mansi R, Wang XJ, Forrer F, Waser B, Cescato R, Graham K, Borkowski S, Reubi JC, Maecke HR (2011) Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging 38(1):97–107PubMedCrossRefGoogle Scholar
  21. 21.
    Liolios CC, Fragogeorgi EA, Zikos C, Loudos G, Xanthopoulos S, Bouziotis P, Paravatou-Petsotas M, Livaniou E, Varvarigou AD, Sivolapenko GB (2012) Structural modifications of 99mTc-labelled bombesin-like peptides for optimizing pharmacokinetics in prostate tumor targeting. Int J Pharm 430(1–2):1–17PubMedCrossRefGoogle Scholar
  22. 22.
    Nanda PK, Wienhoff BE, Rold TL, Sieckman GL, Szczodroski AF, Hoffman TJ, Rogers BE, Smith CJ (2012) Positron-emission tomography (PET) imaging agents for diagnosis of human prostate cancer: agonist vs. antagonist ligands. In Vivo 26(4):583–592PubMedGoogle Scholar
  23. 23.
    Kahkonen E, Jambor I, Kemppainen J, Lehtio K, Gronroos TJ, Kuisma A, Luoto P, Sipila HJ, Tolvanen T, Alanen K, Silen J, Kallajoki M, Roivainen A, Schaefer N, Schibli R, Dragic M, Johayem A, Valencia R, Borkowski S, Minn H (2013) In vivo imaging of prostate cancer using Ga-68-labeled bombesin analog BAY86-7548. Clin Cancer Res 19:5434–5443PubMedCrossRefGoogle Scholar
  24. 24.
    Roivainen A, Kahkonen E, Luoto P, Borkowski S, Hofmann B, Jambor I, Lehtio K, Rantala T, Rottmann A, Sipila H, Sparks R, Suilamo S, Tolvanen T, Valencia R, Minn H (2013) Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of Ga-68 bombesin antagonist BAY 86-7548 in healthy men. J Nucl Med 54(6):867–872PubMedCrossRefGoogle Scholar
  25. 25.
    Jamous M, Tamma ML, Gourni E, Waser B, Reubi JC, Maecke HR, Mansi R (2014) PEG spacers of different length influence the biological profile of bombesin-based radiolabeled antagonists. Nucl Med Biol 41(6):464–470PubMedCrossRefGoogle Scholar
  26. 26.
    Varasteh Z, Rosenström U, Velikyan I, Mitran B, Altai M, Honarvar H, Rosestedt M, Lindeberg G, Sörensen J, Larhed M (2014) The effect of mini-PEG-based spacer length on binding and pharmacokinetic properties of a 68 Ga-labeled NOTA-conjugated antagonistic analog of bombesin. Molecules 19(7):10455–10472PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Richter S, Wuest M, Bergman CN, Way JD, Krieger S, Rogers BE, Wuest F (2015) Rerouting the metabolic pathway of 18F-labeled peptides: the influence of prosthetic groups. Bioconjug Chem 26(2):201–212PubMedCrossRefGoogle Scholar
  28. 28.
    Chatalic KLS, Konijnenberg M, Nonnekens J, Blois ED, Hoeben S, Ridder CD, Brunel L, Fehrentz JA, Martinez J, Gent DCV (2016) In vivo stabilization of a gastrin-releasing peptide receptor antagonist enhances PET imaging and radionuclide therapy of prostate cancer in preclinical studies. Theranostics 6(1):104–117PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sun Y, Ma X, Zhang Z, Sun Z, Loft M, Ding B, Liu C, Xu L, Yang M, Jiang Y, Xiao Y, Chen Z, Hong X (2016) Preclinical study on GRPR-targeted 68Ga-probes for PET imaging of prostate cancer. Bioconjug Chem 27(8):1857–1864PubMedCrossRefGoogle Scholar
  30. 30.
    Mitran B, Thisgaard H, Rosenstrom U, Dam JH, Larhed M, Tolmachev V, Orlova A (2017) High contrast PET imaging of GRPR expression in prostate cancer using cobalt-labeled bombesin antagonist RM26. Contrast Media Mol Imaging 2017:6873684PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bakker IL, van Tiel ST, Haeck J, Doeswijk GN, De BE, Segbers M, Maina T, Nock BA, De JM, Dalm SU (2018) In vivo stabilized SB3, an attractive GRPR antagonist, for pre- and intra-operative imaging for prostate cancer. Mol Imaging Biol (MIB) 20(6):973–983CrossRefGoogle Scholar
  32. 32.
    Cheng S, Lang L, Wang Z, Jacobson O, Yung B, Zhu G, Gu D, Ma Y, Zhu X, Niu G, Chen X (2018) Positron emission tomography imaging of prostate cancer with Ga-68-labeled gastrin-releasing peptide receptor agonist BBN7–14 and antagonist RM26. Bioconjug Chem 29(2):410–419PubMedCrossRefGoogle Scholar
  33. 33.
    Liu S (2009) Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem 20(12):2199–2212PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Abiraj K, Jaccard H, Kretzschmar M, Helm L, Maecke HR (2008) Novel DOTA-based prochelator for divalent peptide vectorization: synthesis of dimeric bombesin analogues for multimodality tumor imaging and therapy. Chem Commun 28:3248–3250CrossRefGoogle Scholar
  35. 35.
    Fournier P, Dumulon-Perreault V, Ait-Mohand S, Langlois R, Benard F, Lecomte R, Guerin B (2012) Comparative study of 64Cu/NOTA-[D-Tyr6, βAla11, Thi13, Nle14] BBN(6–14) monomer and dimers for prostate cancer PET imaging. EJNMMI Res 2:8PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Yu Z, Carlucci G, Ananias HJK, Dierckx RAJO, Liu S, Helfrich W, Wang F, de Jong IJ, Elsinga PH (2013) Evaluation of a technetium-99 m labeled bombesin homodimer for GRPR imaging in prostate cancer. Amino Acids 44(2):543–553PubMedCrossRefGoogle Scholar
  37. 37.
    Lindner S, Michler C, Wängler B, Bartenstein P, Fischer G, Schirrmacher R, Wängler C (2014) PESIN multimerization improves receptor avidities and in vivo tumor targeting properties to GRPR-overexpressing tumors. Bioconjug Chem 25(3):489–500PubMedCrossRefGoogle Scholar
  38. 38.
    Matsumura K, Zouda M, Wada Y, Yamashita F, Hashida M, Watanabe Y, Mukai H (2018) Urokinase injection-triggered clearance enhancement of a 4-arm PEG-conjugated 64Cu-bombesin analog tetramer: a novel approach for the improvement of PET imaging contrast. Int J Pharm 545(1–2):206–214PubMedCrossRefGoogle Scholar
  39. 39.
    Chung HH, Harms G, Seong CM, Choi BH, Min C, Taulane JP, Goodman M (2004) Dendritic oligoguanidines as intracellular translocators. Biopolymers 76(1):83–96PubMedCrossRefGoogle Scholar
  40. 40.
    Bianchi A, Arosio D, Perego P, De CM, Carenini N, Zaffaroni N, De MM, Manzoni L (2015) Design, synthesis and biological evaluation of novel dimeric and tetrameric cRGD-paclitaxel conjugates for integrin-assisted drug delivery. Org Biomol Chem 13(27):7530–7541PubMedCrossRefGoogle Scholar
  41. 41.
    Chen F, Zhu B, Pan D, Xu Y, Lin X, Yang R, Wang L, Yang M (2016) PET imaging of prostate cancer with 18F-Al-NODA-MATBBN. J Radioanal Nucl Chem 308(3):905–911CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Liangang Zhuo
    • 1
    • 3
    • 4
  • Xia Yang
    • 1
    • 3
    • 4
  • Wei Liao
    • 1
    • 4
  • Jing Wang
    • 1
    • 4
  • Hailin Wang
    • 1
  • Minli Lv
    • 2
    • 4
  • Guanquan Wang
    • 1
    • 4
  • Hu Song
    • 1
    • 4
  • Yue Feng
    • 2
    • 4
  • Yue Chen
    • 2
    • 4
  • Hongyuan Wei
    • 1
    • 3
    • 4
  • Yuchuan Yang
    • 1
    • 3
    • 4
  • Peng Zhao
    • 1
    • 3
    • 4
  1. 1.Institute of Nuclear Physics and Chemistry (INPC)China Academy of Engineering Physics (CAEP)MianyangPeople’s Republic of China
  2. 2.Department of Nuclear MedicineThe Affiliated Hospital Southwest of Medical UniversityLuzhouPeople’s Republic of China
  3. 3.Collaborative Innovation Center of Radiation Medicine of JiangsuHigher Education InstitutionsSuzhouPeople’s Republic of China
  4. 4.Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan ProvinceMianyangPeople’s Republic of China

Personalised recommendations