Highly efficient sorption of U(VI) from aqueous solution using amino/amine-functionalized magnetic mesoporous silica nanospheres

  • Limin ZhouEmail author
  • Jinbo Ouyang
  • Zhirong Liu
  • Guolin Huang
  • Yun Wang
  • Zhao Li
  • Adesoji A. Adesina


The amino/amine-functionalized magnetic mesoporous silica nanospheres (MSN-DETA) exhibited relatively high sorption capacity (qm = 153.68 mg/g) as well as excellent selectivity for U(VI). The U4f7/2 X-ray photoelectron spectrometry revealed two binding energies at 380.8 ± 0.3 eV (with the proportion of 75.2%) and 382.3 ± 0.3 eV, which indicated the inner-surface complexation mechanism. The sorption isotherms fitted well with the Langmuir model, whereas the sorption kinetics could be fitted by pseudo-second-order model. The U(VI)-loaded MSN-DETA could be efficiently regenerated by acidified EDTA (0.4 M). These findings indicated that MSN-DETA could be used as a potential material for the efficient sorption/separation of U(VI) from wastewater.


Silica Magnetic sorbents Amino/amine functionalization U(VI) Adsorption 



The work is financially supported by the National Natural Science Foundation (21667001; 21866002; 21866005; 21706028; 21866006), the Key Research and Development Program and the Natural Science Fund Program of Jiangxi Province (20161BBF60059; S2017ZRMSB0473).

Supplementary material

10967_2018_6381_MOESM1_ESM.docx (169 kb)
Supplementary material 1 (DOCX 168 kb)


  1. 1.
    Mahfouz MG, Galhoum AA, Gomaa NA, Abdel-Rehem SS, Atia AA, Vincent T, Thierry V, Guibal E (2015) Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: equilibrium and kinetic studies. Chem Eng J 262:198–209CrossRefGoogle Scholar
  2. 2.
    Veliscek-Carolan J (2016) Separation of actinides from spent nuclear fuel: a review. J Hazard Mater 318:266–281CrossRefGoogle Scholar
  3. 3.
    Moon EM, Ogden MD, Griffith CS, Wilson A, Mata JP (2017) Impact of chloride on uranium (VI) speciation in acidic sulfate ion exchange systems: towards seawater-tolerant mineral processing circuits. Ind Eng Chem 51:255–263CrossRefGoogle Scholar
  4. 4.
    Ji G, Zhu G, Wang X, Wei Y, Yuan J, Gao C (2017) Preparation of amidoxime functionalized SBA-15 with platelet shape and adsorption property of U(VI). Sep Purif Technol 174:455–465CrossRefGoogle Scholar
  5. 5.
    Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ (2010) Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349:293–299CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Li J, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime- functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283CrossRefGoogle Scholar
  7. 7.
    Hamza MF, Roux JC, Guibal E (2018) Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles. Chem Eng J 344:124–137CrossRefGoogle Scholar
  8. 8.
    Bai L, Duan S, Jiang W, Liu M, Wang S, Sang M (2017) High performance polydopamine-functionalized mesoporous silica nanospheres for U(VI) removal. App Surf Sci 426:1121–1132CrossRefGoogle Scholar
  9. 9.
    Lee HI, Kim JH, Kim JM, Kim S, Park JN, Hwang JS, Yeon JW, Jung Y (2010) Application of ordered nanoporous silica for removal of uranium ions fromaqueous solutions. Nanosci Nanotechnol 10:217–221CrossRefGoogle Scholar
  10. 10.
    Yuan LY, Liu YL, Shi WQ, Lv YL, Lan JH, Zhao YL, Chai ZF (2011) High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution. Dalton Trans 40:7446–7453CrossRefGoogle Scholar
  11. 11.
    Kothalawala N, Blitz JP, GunKo VM, Jaroniec M, Grabicka B, Semeniuc RF (2013) Post-synthesis surface-modified silicas as adsorbents for heavy metal ion contaminants Cd(II), Cu(II), Cr(III), and Sr(II) in aqueous solutions. J Colloid Interface Sci 392:57–64CrossRefGoogle Scholar
  12. 12.
    Atia AA (2005) Studies on the interaction of mercury(II) and uranyl(II) with modified chitosan resins. Hydrometallurgy 80:13–22CrossRefGoogle Scholar
  13. 13.
    Sert S, Eral M (2010) Uranium adsorption studies on aminopropyl modifiedmesoporous sorbent (NH2-MCM-41) using statistical design method. J Nucl Mater 406:285–292CrossRefGoogle Scholar
  14. 14.
    Liu Y, Yuan L, Yuan Y, Lan J, Li Z, Feng Y, Zhao Y, Chai Z, Shi W (2012) High efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. J Radioanal Nucl Chem 292:803–810CrossRefGoogle Scholar
  15. 15.
    Elwakeel KZ, Atia AA, Guibal E (2014) Fast removal of uranium from aqueous solutions using tetraethylenepentamine modified magnetic chitosan resin. Bioresour Technol 160:107–114CrossRefGoogle Scholar
  16. 16.
    Chethan PD, Vishalakshi B (2013) Synthesis of ethylenediamine modified chitosan and evaluation for removal of divalent metal ions. Carbohydr Polym 97:530–536CrossRefGoogle Scholar
  17. 17.
    Zhang X, Jiao C, Wang J, Liu Q, Li R, Yang P, Zhang M (2012) Removal of uranium(VI) from aqueous solutions by magnetic Schiff base: kinetic and thermodynamic investigation. Chem Eng J 198:412–419CrossRefGoogle Scholar
  18. 18.
    Kalapathy U, Proctor A, Shultz J (2000) A simple method for production of pure silica from rice hull ash. Bioresour Technol 73:257–262CrossRefGoogle Scholar
  19. 19.
    Li D, Egodawatte S, Kaplan DI, Larsen SC, Serkiz SM, Seaman JC (2016) Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater. J Hazard Mater 317:494–502CrossRefGoogle Scholar
  20. 20.
    Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ (2010) Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349:293–299CrossRefGoogle Scholar
  21. 21.
    Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215:208–216CrossRefGoogle Scholar
  22. 22.
    Guimarães V, Rodríguez-Castellón E, Algarra M, Rocha F, Bobos I (2016) Kinetics of uranyl ions sorption on heterogeneous smectite structure at pH 4 and 6 using a continuous stirred flow-through reactor. Appl Clay Sci 134:71–82CrossRefGoogle Scholar
  23. 23.
    Guimarães V, Rodríguez-Castellón E, Algarra M, Rocha F, Bobos I (2016) Influence of pH, layer charge location and crystal thickness distribution on U(VI) sorption onto heterogeneous dioctahedral smectite. J Hazard Mater 317:246–258CrossRefGoogle Scholar
  24. 24.
    Venkatesan K, Sukumaran V, Antony M, Vasudeva RP (2004) Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel. J Radioanal Nucl Chem 260:443–450CrossRefGoogle Scholar
  25. 25.
    Bryant DE, Stewart DI, Kee TP, Barton CS (2003) Development of a functionalized polymer-coated silica for the removal of uranium from groundwater. Environ Sci Technol 37:4011–4016CrossRefGoogle Scholar
  26. 26.
    Jamali MR, Assadi Y, Shemirani F, Hosseini MR, Kozani RR, Masterifarahani M (2006) Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 579:68–73CrossRefGoogle Scholar
  27. 27.
    Zou H, Zhou L, Huang Z, Liu Z, Luo T (2017) Characteristics of equilibrium and kinetic for U(VI) adsorption using novel diamine-functionalized hollow silica microspheres. J Radioanal Nucl Chem 311:269–278CrossRefGoogle Scholar
  28. 28.
    Vivero-Escoto JL, Carboni M, Abney CW, Dekrafft KE, Lin WB (2013) Organo-functionalized mesoporous silicas for efficient uranium extraction. Microporous Mesoporous Mater 180:22–31CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Limin Zhou
    • 1
    • 2
    Email author
  • Jinbo Ouyang
    • 1
  • Zhirong Liu
    • 1
  • Guolin Huang
    • 1
  • Yun Wang
    • 1
  • Zhao Li
    • 1
  • Adesoji A. Adesina
    • 2
  1. 1.State Key Laboratory for Nuclear Resources and EnvironmentEast China University of TechnologyNanchangPeople’s Republic of China
  2. 2.School of Chemical Sciences and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations