Advertisement

One-step synthesis of magnetic composite UiO-66/Fe3O4/GO for the removal of radioactive cesium ions

  • Sheng FengEmail author
  • Ziqiu Ni
  • Shanshan FengEmail author
  • Zhihui Zhang
  • Shuguang Liu
  • Runbai Wang
  • Jiawei Hu
Article
  • 12 Downloads

Abstract

In this study, the UiO-66/Fe3O4/GO composite was prepared by one step method for removal of cesium ions (Cs+) in water and exhibited excellent adsorption capacity for Cs+ (62.07 mg g−1), which can be attributed to the size compatibility of nanosized cavities and the addition of GO. As supporting matrix, GO decreased particle aggregation and increased the surface area of the adsorbent. The composite had good acid and alkali resistance, thermal stability, rapid adsorption rate and can be separated from water by magnetic separation rapidly.

Keywords

UiO-66/Fe3O4/GO Adsorption Cesium ions 

Notes

Acknowledgements

The authors sincerely acknowledged financial supports from the National Natural Science Foundation of China (Nos. 41371446, 41271498); the National Social Science Foundation of China (No. 16BJL074) and SKLECRA2014OFP10; Science and Technology Project of Changzhou University (ZMF17020117); Natural Science Fund for Colleges and Universities in Jiangsu Province (18KJB610001); Natural Science Foundation of Jiangsu Province (BK20180964).

References

  1. 1.
    Kadam AA, Jang J, Lee DS (2016) Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution. Bioresour Technol 216:391–398.  https://doi.org/10.1016/j.biortech.2016.05.103 CrossRefPubMedGoogle Scholar
  2. 2.
    Wang H, Otsu H, Sakurai H, Ahn DS, Aikawa M, Doornenbal P, Fukuda N, Isobe T, Kawakami S, Koyama S (2016) Spallation reaction study for fission products in nuclear waste: cross section measurements for 137Cs and 90Sr on proton and deuteron. Phys Lett B 754(C):104–108CrossRefGoogle Scholar
  3. 3.
    Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182(1):225–231CrossRefGoogle Scholar
  4. 4.
    Evangeliou N, Balkanski Y, Cozic A, Møller AP (2014) Global and local cancer risks after the Fukushima Nuclear Power Plant accident as seen from Chernobyl: a modeling study for radiocaesium (134Cs & 137Cs). Environ Int 64(64C):17–27CrossRefGoogle Scholar
  5. 5.
    Lee WE (2015) Radioactive waste management and contaminated site clean-up. Elsevier, Woodhead PublishingGoogle Scholar
  6. 6.
    Mahmoud MR, Seliman AF (2014) Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of 137Cs+ and 99TcO4− from aqueous solutions. Appl Radiat Isot 91:141–154.  https://doi.org/10.1016/j.apradiso.2014.05.021 CrossRefPubMedGoogle Scholar
  7. 7.
    Khandaker S, Kuba T, Kamida S, Uchikawa Y (2017) Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal. J Environ Chem Eng 5(2):1456–1464.  https://doi.org/10.1016/j.jece.2017.02.014 CrossRefGoogle Scholar
  8. 8.
    Awual MR, Yaita T, Taguchi T, Shiwaku H, Suzuki S, Okamoto Y (2014) Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. J Hazard Mater 278:227–235.  https://doi.org/10.1016/j.jhazmat.2014.06.011 CrossRefPubMedGoogle Scholar
  9. 9.
    Vlasova EA, Yakimov SA, Naidenko EV, Kudrik EV, Makarov SV (2016) Application of metal–organic frameworks for purification of vegetable oils. Food Chem 190:103–109.  https://doi.org/10.1016/j.foodchem.2015.05.078 CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang W, Yan Z, Gao J, Tong P, Liu W, Zhang L (2015) Metal–organic framework UiO-66 modified magnetite@silica core–shell magnetic microspheres for magnetic solid-phase extraction of domoic acid from shellfish samples. J Chromatogr A 1400:10–18.  https://doi.org/10.1016/j.chroma.2015.04.061 CrossRefPubMedGoogle Scholar
  11. 11.
    Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (2012) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112(2):724–781.  https://doi.org/10.1021/cr2003272 CrossRefPubMedGoogle Scholar
  12. 12.
    Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal–organic framework materials as chemical sensors. Chem Rev 112(2):1105–1125.  https://doi.org/10.1021/cr200324t CrossRefPubMedGoogle Scholar
  13. 13.
    Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459.  https://doi.org/10.1039/b807080f CrossRefPubMedGoogle Scholar
  14. 14.
    Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38(5):1477–1504.  https://doi.org/10.1039/b802426j CrossRefPubMedGoogle Scholar
  15. 15.
    Zhao H-X, Zou Q, Sun S-K, Yu C, Zhang X, Li R-J, Fu Y-Y (2016) Theranostic metal–organic framework core–shell composites for magnetic resonance imaging and drug delivery. Chem Sci 7(8):5294–5301.  https://doi.org/10.1039/c6sc01359g CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ribeiro AM, Campo MC, Narin G, Santos JC, Ferreira A, Chang J-S, Hwang YK, Seo Y-K, Lee UH, Loureiro JM, Rodrigues AE (2013) Pressure swing adsorption process for the separation of nitrogen and propylene with a MOF adsorbent MIL-100(Fe). Sep Purif Technol 110:101–111.  https://doi.org/10.1016/j.seppur.2013.03.009 CrossRefGoogle Scholar
  17. 17.
    Xiao C, Silver MA, Wang S (2017) Metal–organic frameworks for radionuclide sequestration from aqueous solution: a brief overview and outlook. Dalton Trans 46(47):16381–16386.  https://doi.org/10.1039/c7dt03670a CrossRefPubMedGoogle Scholar
  18. 18.
    Shang HB, Yang CX, Yan XP (2014) Metal–organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples. J Chromatogr A 1357:165–171.  https://doi.org/10.1016/j.chroma.2014.05.027 CrossRefPubMedGoogle Scholar
  19. 19.
    Katz MJ, Brown ZJ, Colon YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun 49(82):9449–9451.  https://doi.org/10.1039/c3cc46105j CrossRefGoogle Scholar
  20. 20.
    Beheshti H, Irani M, Hosseini L, Rahimi A, Aliabadi M (2016) Removal of Cr(VI) from aqueous solutions using chitosan/MWCNT/Fe3O4 composite nanofibers-batch and column studies. Chem Eng J 284:557–564.  https://doi.org/10.1016/j.cej.2015.08.158 CrossRefGoogle Scholar
  21. 21.
    Lv F, Fu L, Giannelis EP, Qi G (2014) Preparation of γ-Fe2O3/SiO2-capsule composites capable of using as drug delivery and magnetic targeting system from hydrophobic iron acetylacetonate and hydrophilic SiO2-capsule. Solid State Sci 34:49–55.  https://doi.org/10.1016/j.solidstatesciences.2014.05.006 CrossRefGoogle Scholar
  22. 22.
    Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244.  https://doi.org/10.1002/anie.200602866 CrossRefGoogle Scholar
  23. 23.
    Li L, Liu XL, Geng HY, Hu B, Song GW, Xu ZS (2013) A MOF/graphite oxide hybrid (MOF: HKUST-1) material for the adsorption of methylene blue from aqueous solution. J Mater Chem A 1(35):10292.  https://doi.org/10.1039/c3ta11478c CrossRefGoogle Scholar
  24. 24.
    Yang H, Sun L, Zhai J, Li H, Zhao Y, Yu H (2014) In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J Mater Chem A 2(2):326–332.  https://doi.org/10.1039/c3ta13548a CrossRefGoogle Scholar
  25. 25.
    Li L, Liu Y, Sun K, He Y, Liu L (2017) One step synthesis of magnetic composite Fe3O4/Cu-BTC/GO. Mater Lett 197:196–200.  https://doi.org/10.1016/j.matlet.2017.03.004 CrossRefGoogle Scholar
  26. 26.
    Mobtaker HG, Yousefi T, Pakzad SM (2016) Cesium removal from nuclear waste using a magnetical CuHCNPAN nano composite. J Nucl Mater 482:306–312.  https://doi.org/10.1016/j.jnucmat.2016.10.034 CrossRefGoogle Scholar
  27. 27.
    Zhu C, Guo S, Wang P, Xing L, Fang Y, Zhai Y, Dong S (2010) One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. Chem Commun 46(38):7148–7150.  https://doi.org/10.1039/c0cc01459a CrossRefGoogle Scholar
  28. 28.
    Chen Q, He Q, Lv M, Xu Y, Yang H, Liu X, Wei F (2015) Selective adsorption of cationic dyes by UiO-66–NH2. Appl Surf Sci 327:77–85.  https://doi.org/10.1016/j.apsusc.2014.11.103 CrossRefGoogle Scholar
  29. 29.
    Li L, Liu XL, Gao M, Hong W, Liu GZ, Fan L, Hu B, Xia QH, Liu L, Song GW, Xu ZS (2014) The adsorption on magnetic hybrid Fe3O4/HKUST-1/GO of methylene blue from water solution. J Mater Chem A 2(6):1795–1801.  https://doi.org/10.1039/c3ta14225f CrossRefGoogle Scholar
  30. 30.
    Zheng X, Dou J, Yuan J, Qin W, Hong X, Ding A (2017) Removal of Cs+ from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite. J Environ Sci (China) 56:12–24.  https://doi.org/10.1016/j.jes.2016.08.019 CrossRefGoogle Scholar
  31. 31.
    Jang J, Miran W, Lee DS (2018) Amino-functionalized multi-walled carbon nanotubes for removal of cesium from aqueous solution. J Radioanal Nucl Chem 316(2):691–701.  https://doi.org/10.1007/s10967-018-5812-6 CrossRefGoogle Scholar
  32. 32.
    Chang S, Chang L, Han W, Li Z, Dai Y, Zhang H (2018) In situ green production of Prussian blue/natural porous framework nanocomposites for radioactive Cs+ removal. J Radioanal Nucl Chem 316(1):209–219.  https://doi.org/10.1007/s10967-018-5767-7 CrossRefGoogle Scholar
  33. 33.
    Naeimi S, Faghihian H (2017) Performance of novel adsorbent prepared by magnetic metal–organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs+ from aqueous solution. Sep Purif Technol 175:255–265.  https://doi.org/10.1016/j.seppur.2016.11.028 CrossRefGoogle Scholar
  34. 34.
    Yang P, Liu Q, Liu J, Zhang H, Li Z, Li R, Liu L, Wang J (2017) Interfacial growth of metal organic framework (UiO-66) on the functionalization of graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(VI). J Mater Chem A 5(34):17933–17942.  https://doi.org/10.1039/c6ta10022h CrossRefGoogle Scholar
  35. 35.
    Ali RM, Hamad HA, Hussein MM, Malash GF (2016) Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng 91:317–332.  https://doi.org/10.1016/j.ecoleng.2016.03.015 CrossRefGoogle Scholar
  36. 36.
    Rearte TA, Bozzano PB, Andrade ML, Fabrizio de Iorio A (2013) Biosorption of Cr(III) and Pb(II) by Schoenoplectus californicus and insights into the binding mechanism. ISRN Chem Eng 2013:1–13.  https://doi.org/10.1155/2013/851602 CrossRefGoogle Scholar
  37. 37.
    Kilincarslan Kaygun A, Eral M, Akyil Erenturk S (2016) Removal of cesium and strontium using natural attapulgite: evaluation of adsorption isotherm and thermodynamic data. J Radioanal Nucl Chem 311(2):1459–1464.  https://doi.org/10.1007/s10967-016-4989-9 CrossRefGoogle Scholar
  38. 38.
    Saha S, Singhal RK, Basu H, Pimple MV (2016) Ammonium molybdate phosphate functionalized silicon dioxide impregnated in calcium alginate for highly efficient removal of 137Cs from aquatic bodies. RSC Adv 6(98):95620–95627.  https://doi.org/10.1039/c6ra20283g CrossRefGoogle Scholar
  39. 39.
    Liu H, Xie S, Wang T, Liu Y, Zeng T (2017) Effect of coexisting cations on the adsorption of cesium onto poly (β-cyclodextrin)/bentonite composite. J Radioanal Nucl Chem 312(3):557–565.  https://doi.org/10.1007/s10967-017-5256-4 CrossRefGoogle Scholar
  40. 40.
    Tan IA, Ahmad AL, Hameed BH (2009) Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J Hazard Mater 164(2–3):473–482.  https://doi.org/10.1016/j.jhazmat.2008.08.025 CrossRefPubMedGoogle Scholar
  41. 41.
    Qiu H, Lv L, Pan B-c, Zhang Q-j, Zhang W-m, Zhang Q-x (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10(5):716–724.  https://doi.org/10.1631/jzus.A0820524 CrossRefGoogle Scholar
  42. 42.
    Lyu J, Liu H, Zeng Z, Zhang J, Xiao Z, Bai P, Guo X (2017) Metal–organic framework UiO-66 as an efficient adsorbent for boron removal from aqueous solution. Ind Eng Chem Res 56(9):2565–2572.  https://doi.org/10.1021/acs.iecr.6b04066 CrossRefGoogle Scholar
  43. 43.
    Yang S, Okada N, Nagatsu M (2016) The highly effective removal of Cs+ by low turbidity chitosan-grafted magnetic bentonite. J Hazard Mater 301:8–16.  https://doi.org/10.1016/j.jhazmat.2015.08.033 CrossRefPubMedGoogle Scholar
  44. 44.
    Alamudy HA, Cho K (2018) Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid. Chem Eng J 349:595–602.  https://doi.org/10.1016/j.cej.2018.05.137 CrossRefGoogle Scholar
  45. 45.
    Nam SW, Jung C, Li H, Yu M, Flora JR, Boateng LK, Her N, Zoh KD, Yoon Y (2015) Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution. Chemosphere 136:20–26.  https://doi.org/10.1016/j.chemosphere.2015.03.061 CrossRefPubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Environmental and Safety EngineeringChangzhou UniversityChangzhouChina
  2. 2.Jiangsu Key Laboratory of Advanced Catalytic Materials and TechnologyChangzhou UniversityChangzhouChina

Personalised recommendations