Simulation of radioactive decay by barium substitution for cesium in sodium aluminum-iron phosphate glass

  • S. V. StefanovskyEmail author
  • O. I. Stefanovsky
  • I. L. Prusakov
  • M. I. Kadyko
  • B. S. Nikonov
  • I. S. Glazkova


Simulation of 137Cs radioactive decay to 137Ba by an equiatomic substitution of Cs with Ba in a 30 Na2O, 10 Cs2O, 10 Al2O3, 10 Fe2O3, 40 P2O5 (mol%) glass was studied by X-ray diffraction, scanning electron microscopy, Fourier Transform Infrared spectroscopy, Mössbauer spectroscopy, and measurement of hydrolytic durability. Gradual Ba substitution for Cs yielded minor changes in the structural network but did not offer appreciable effect on phase composition and hydrolytic durability of the glasses.


Cesium Barium Radioactive decay Sodium alumino-iron phosphate glass Infrared spectroscopy Electron microscopy Mossbauer spectroscopy Leaching X-ray diffraction 



This work was carried out within the frame of the State Assignment No. AAAA-A16-116110910010-3 between the Russian Academy of Sciences and the Ministry of Science and High Education of the Russian Federation.


  1. 1.
    Day DE, Wu Z, Ray CS, Hrma P (1998) Chemically durable iron phosphate glass wasteforms. J Non Cryst Solids 241:1–12CrossRefGoogle Scholar
  2. 2.
    Marasinghe GK, Karabulut M, Ray CS, Day DE, Shuh DK, Allen PG, Saboungi ML, Grimsditch M, Haeffner D (2000) Properties and structure of vitrified iron phosphate nuclear wasteforms. J Non Cryst Solids 263&264:146–154CrossRefGoogle Scholar
  3. 3.
    Kim C-W, Ray CS, Zhu D, Day DE, Gombert D, Aloy A, Moguš-Milanković A, Karabulut M (2003) Chemically durable iron phosphate glasses for vitrifying sodium bearing waste (SBW) using conventional and cold crucible induction melting (CCIM) techniques. J Nucl Mater 322:152–164CrossRefGoogle Scholar
  4. 4.
    Day DE, Ray CS (2013) A review of iron phosphate glasses and recommendations for vitrifying hanford waste, INL/EXT-13-30839, INL. Idaho National Laboratory, USAGoogle Scholar
  5. 5.
    Sheqi P, Xiaogang W, Chengcheng X, Wei S, Hailing Z, Yongpeng W (2017) Solidification of simulated α-HLLW in iron-phosphate glass-ceramics. In: Proceedings of the 20th Pacific basin nuclear conference, vol 3, pp 515–520Google Scholar
  6. 6.
    Brezhneva NE, Minaev AA, Oziraner SN (1979) Vitrification of high sodium-aluminum wastes: composition ranges and properties. In: McCarthy GJ (ed) Scientific basis for nuclear waste management, vol 1. Plenum Press, New York, pp 43–50CrossRefGoogle Scholar
  7. 7.
    Vashman AA, Polyakov AS (eds) (1997) Phosphate glasses with radioactive waste. Tsniiatominform, MoscowGoogle Scholar
  8. 8.
    Stefanovsky SV, Stefanovsky OI, Kadyko MI, Presnyakov IA, Myasoedov BF (2015) The effect of Fe2O3 substitution for Al2O3 on the phase composition and structure of sodium-aluminum-iron phosphate glasses. J Non Cryst Solids 425:138–145CrossRefGoogle Scholar
  9. 9.
    Stefanovsky SV, Stefanovskaya OI, Vinokurov SE, Danilov SS, Myasoedov BF (2015) Phase composition, structure, and hydrolytic durability of glasses in the Na2O-Al2O3-(Fe2O3)-P2O5 system at replacement of Al2O3 by Fe2O3. Radiochemistry 57:348–355CrossRefGoogle Scholar
  10. 10.
    Stefanovsky SV, Stefanovsky OI, Remizov MB, Kozlov PV, Belanova EA, Makarovsky RA, Myasoedov BF (2017) Sodium-aluminum-iron phosphate glasses as legacy high level waste forms. Prog Nucl Energy 94:229–234CrossRefGoogle Scholar
  11. 11.
    Stefanovsky SV, Presniakov IA, Sobolev AV, Glazkova IA, Kadyko MI, Stefanovsky OI (2016) The effect of electron irradiation on the structure and iron speciation in sodium aluminum (Iron) phosphate glasses. J Nucl Mater 476:262–269CrossRefGoogle Scholar
  12. 12.
    Stefanovsky SV, Stefanovskaya OI, Kadyko MI, Nikonov BS, Myasoedov BF (2016) The effect of method of thermal treatment and irradiation on the structure of anionic motif and crystallization of uranium bearing phosphate glasses. Radiochemistry 58:654–661CrossRefGoogle Scholar
  13. 13.
    Stefanovsky SV, Stefanovsky OI, Myasoedov BF, Vinikurov SE, Danilov SS, Nikonov BS, Maslakov KI, Teterin YuA (2017) The phase composition, structure, and hydrolytic durability of sodium-aluminum-(iron)-phosphate glassy materials doped with lanthanum, cerium, europium, and gadolinium oxides. J Non Cryst Solids 471:421–428CrossRefGoogle Scholar
  14. 14.
    Lutze W (1988) Silicate glasses. In: Lutze W, Ewing RC (eds) Radioactive waste forms for the future. Elsevier Science Publishers, AmsterdamGoogle Scholar
  15. 15.
    Weber WJ, Ewing RC, Angell CA, Arnold GW, Cormack AN, Delaye JM, Griscom DL, Hobbs LW, Navrotsky A, Price DL, Stoneham AM, Weinberg MC (1997) Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. J Mater Res 12:1946–1975CrossRefGoogle Scholar
  16. 16.
    Strachan DM, Scheele RD, Buck EC, Icenhower JP, Kozelisky AE, Sell RL, Elovich RJ, Buchmiller WC (2005) Radiation damage effects in candidate titanates for Pu disposition: pyrochlore. J Nucl Mater 345:109–135CrossRefGoogle Scholar
  17. 17.
    Sun K, Ding T, Wang LM, Ewing RC (2004) Radiation-induced nanostructures in an iron-phosphate glass. Mater Res Soc Symp Proc 792:R3.21.1Google Scholar
  18. 18.
    Sun K, Wang LM, Ewing RC (2004) Microstructure and chemistry of an aluminophosphate glass waste form under electron beam irradiation. Mater Res Soc Symp Proc 807:121–126CrossRefGoogle Scholar
  19. 19.
    Sun K, Wang LM, Ewing RC, Weber WJ (2005) Effects on electron irradiation in nuclear waste glasses. Philos Mag 85:597–608CrossRefGoogle Scholar
  20. 20.
    Jegadeesan P, Amirthapandian S, Joseph K, David C, Panigrahi BK, Kutty KVG (2015) Ion irradiation induced crystallization in iron phosphate glass—TEM investigations. Adv Mater Lett 6:224–227CrossRefGoogle Scholar
  21. 21.
    Gandy AS, Stennett MC, Brigden C, Hyatt NC (2015) Ion beam irradiation induced structural modifications in iron phosphate glasses: a model system for understanding radiation damage in nuclear waste glasses. Mater Res Soc Symp Proc. Google Scholar
  22. 22.
    Gray WJ (1982) Fission product transmutation effects on high-level radioactive waste forms. Nature 296:547–549CrossRefGoogle Scholar
  23. 23.
    Joseph K, Stennett MC, Hyatt NC, Asuvatharam R, Dube CL, Gandy AS, Govindan Kutty KV, Jolley K, Vasudeva Rao PR, Smith R (2017) Iron phosphate glasses: bulk properties and atomic scale structure. J Nucl Mater 494:342–353CrossRefGoogle Scholar
  24. 24.
    Matsnev ME, Rusakov VS (2012) SpectrRelax: an application for Mössbauer spectra modeling and fitting. AIP Conf Proc 1489:178–185CrossRefGoogle Scholar
  25. 25.
    ASTM Standard C 1285-94 (1994) Standard Test methods for determining chemical durability of nuclear waste glasses: the product consistency test (PCT). ASTM, PhiladelphiaGoogle Scholar
  26. 26.
    Jantzen CM, Bibler NE, Beam DC (1992) Characterization of the defense waste processing facility (DWPF) environmental assessment (EA) Glass Standard Reference Material. WSRC-TR-92-346Google Scholar
  27. 27.
    Chemical durability and related properties of solidified high-level waste forms (1985). Technical reports series No. 257, IAEA, ViennaGoogle Scholar
  28. 28.
    Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds. Part A, 6th edn. Wiley, HobokenGoogle Scholar
  29. 29.
    Lazarev AN, Mirgorodskiy AP, Ignat’ev IS (1975) Vibrational spectra of complex oxides (Russ.). Nauka, LeningradGoogle Scholar
  30. 30.
    Dyer MD (1985) A review of Mössbauer data on inorganic glasses: the effects of composition on iron valency and coordination. Am. Miner 70:304–316Google Scholar
  31. 31.
    Weber WJ, Roberts FP (1983) A review of radiation effects in solid nuclear waste forms. Nucl Technol 60:178–198CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry RASMoscowRussia
  2. 2.Institute of Ore Deposits, Petrography, Mineralogy, and Geochemistry RASMoscowRussia
  3. 3.Department of RadiochemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations