Advertisement

Numerical calculation of fuel burn-up rate in a cylindrical nuclear reactor

  • Adebimpe Amos Amosun
  • Ayodeji Olalekan Salau
  • Olatomide Gbenga Fadodun
  • Mathew Ademola Jayeola
  • Taiwo Kemi Osanyin
  • Musbau Kewulere Fasasi
  • Festus Idowu Ibitoye
Article
  • 3 Downloads

Abstract

The prediction of nuclear reactor fuel burn-up rates throughout a reactors lifetime is an important problem in reactor core design. In this study, we present a novel algorithm called BuCal code. This code was used to perform burn-up analysis for a pressurized water reactor fuel with \({\text{UO}}_{2 }\) whose concentration is 19.5% enriched. Simulation results indicate that the total estimate of 235U consumption in 225 days with high neutron fluence is approximately 99.9% of the initial value. The study further showed that the microscopic absorption and fission cross sections decreases with increasing temperature and the concentrations of 235U and 238U decreases as the numbers of days increases while 236U build-up as the number of days increases.

Keywords

Nuclear reactor Direct integration Cylindrical Burn-up Fuel 

References

  1. 1.
    Pusa ME (2013) Numerical methods for nuclear fuel burn-up calculations. Ph.D. Thesis, VTT Technical Research Institute, Aalto University, OtakaariGoogle Scholar
  2. 2.
    Mathew WF, Charles FW, Marco TP, Ian CG (2014) Reactor fuel isotopics and code validation for nuclear applications. Oak Ridge National LaboratoryGoogle Scholar
  3. 3.
    Fabiano SP, Fernando CS, Aquilino SM (2011) Solution of the isotopic depletion equation using decomposition method and analytical solutions. Cidade Universitaris, BrazilGoogle Scholar
  4. 4.
    Lamarsh JR (1966) Theory of nuclear reactor. Addison-Wesley Publishing Company, New York University, New YorkGoogle Scholar
  5. 5.
    Duderstadt JJ, Hamilton LJ (1976) Nuclear reactor analysis. Department of Nuclear Engineering, The University of MichiganGoogle Scholar
  6. 6.
    Moler C, Van Loan C (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, vol 45. Society for Industrial and Applied Mathematics, Department of Computer Science, Cornell University, New York, pp 801–836 (2003)Google Scholar
  7. 7.
    Hermann OW, Westfall RM (1998) ORIGEN-S, scale system module to calculate fuel depletion actinide transmutation, fission product build-up, decay and associated radiation source terms. Oak Ridge National Laboratory, TennesseeGoogle Scholar
  8. 8.
    Jayeola MA, Fasasi MK, Amosun AA, Salau AO, Ojo BM (2018) Numerical computation of fission product poisoning build-up and burn-up rate in a finite cylindrical nuclear reactor core. Bilge Int J Sci Technol Res 2(1):17–30CrossRefGoogle Scholar
  9. 9.
    Okumura K, Oka Y, Ishiwatari Y (2014) Nuclear reactor calculations. In: Oka Y (ed) Nuclear reactor design. An advanced course in nuclear engineering, vol 2. Springer, Tokyo.  https://doi.org/10.1007/978-4-431-54989-0_2 CrossRefGoogle Scholar
  10. 10.
    Berthou B, Deguelgre C, Magill J (2003) Transmutation characteristics in thermal and fast neutron spectra: application to Americium. J Nucl Mater 320:156–162CrossRefGoogle Scholar
  11. 11.
    Stacey WM (2007) Nuclear reactor physics. Wiley-VCH verlay GmbH; Co. KGaA, WeinheimCrossRefGoogle Scholar
  12. 12.
    Bosler GE, Philips JR, Wilson B, La Bauve RJ, England TR (1982) Production of actinide isotopes in simulated PWR fuel and other influence on inherent neutron emission. International Atomic Energy Agency, ViennaGoogle Scholar
  13. 13.
    Parma EJ (2002) A nuclear reactor burn-up code using MCNP tallies. A report from Sandra National Laboratory, MexicoGoogle Scholar
  14. 14.
    Grasso IG, Sumini IM (2010) Neutronics analyses for fast spectrum nuclear system and scenario studies for advanced nuclear fuel cycles. University Degli Studi Di BolognaGoogle Scholar
  15. 15.
    Rabba JA, Onimisi MY, Salamu AA, Samson DO (2016) Determination of the consumption rate in the core of the Nigeria Research Reactor-1(NIRR-1) fueled with 19.75% UO2 material. Department of Physics, Federal University Lokoja, Kogi State, NigeriaGoogle Scholar
  16. 16.
    Ojo BM, Fasasi MK, Salau AO, Olukotun SF, Jayeola MA (2018) Criticality calculation of a homogenous cylindrical nuclear reactor core using four-group diffusion equations. Turk J Eng 2(3):130–138.  https://doi.org/10.31127/tuje.411549 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Adebimpe Amos Amosun
    • 1
  • Ayodeji Olalekan Salau
    • 2
  • Olatomide Gbenga Fadodun
    • 1
  • Mathew Ademola Jayeola
    • 3
  • Taiwo Kemi Osanyin
    • 1
  • Musbau Kewulere Fasasi
    • 1
  • Festus Idowu Ibitoye
    • 1
  1. 1.Center for Energy Research and DevelopmentObafemi Awolowo UniversityIle-IfeNigeria
  2. 2.Department of Electronic and Electrical EngineeringObafemi Awolowo UniversityIle-IfeNigeria
  3. 3.Department of Physics and Engineering PhysicsObafemi Awolowo UniversityIle-IfeNigeria

Personalised recommendations