Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 319, Issue 1, pp 425–435 | Cite as

Biosorption of uranium(VI) from aqueous solution by Citrus limon peels: kinetics, equlibrium and batch studies

  • Elma Šabanović
  • Tidža Muhić-Šarac
  • Mirza Nuhanović
  • Mustafa MemićEmail author
Article

Abstract

Citrus limon peel (exocarp) was chemically treated and used for removal of U(VI) ions from aqueous solution in a batch system. Optimization of U(VI) sorption parameters, i.e. medium pH, adsorbent amount, contact time, initial U(VI) ions concentration and temperature on the removal performance of both native and modified peels was studied. Adsorption capacity of the modified peel was near up to 4 times higher than of unmodified. The correlation regression coefficients show that the adsorption process can be well-defined by Langmuir equation. Additionally, it conforms to the pseudo-second order kinetic and Weber–Morris diffussion models well.

Keywords

Uranium(VI) Lemon peel Biosorption Kinetics Batch 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Betti M, de las Heras LA (2004) Glow discharge spectrometry for the characterization of nuclear and radioactively contaminated environmental samples. Spectrochim Acta B 59:1359CrossRefGoogle Scholar
  2. 2.
    Benedict M, Pigford TH (1957) Nuclear chemical engineering. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Mehra R, Singh S, Singh K (2007) Uranium studies in water samples belonging to Malwa region of Punjab using track etching technique. Radiat Meas 42:441CrossRefGoogle Scholar
  4. 4.
    Zizkovsky L (2006) Determination of uranium in food in Quebec by neutron activation analysis. J Radioanal Nucl Chem 267:695CrossRefGoogle Scholar
  5. 5.
    Brugge D, de Lomos JL, Oldmixon B (2005) Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium. Rev Environ Health 20:177CrossRefPubMedGoogle Scholar
  6. 6.
    Katsoyiannis IA (2007) Carbonate effects and pH-dependence of uranium sorption onto bacteriogenic iron oxides: kinetic and equilibrium studies. J Hazard Mater B 139:31CrossRefGoogle Scholar
  7. 7.
    Lee KY, Kim KW, Baek YJ, Chung DY, Lee EH, Lee SY, Moon JK (2014) Biosorption of uranium(VI) from aqueous solution by biomass of brown algae Laminaria japonica. Water Sci Technol 70:136CrossRefPubMedGoogle Scholar
  8. 8.
    Bayramoglu G, Akbulut A, Arica MY (2015) Study of polyethyleneimine and amidoxime functionalized hybrid biomass of Spirulina (Arthrospira) platensis for adsorption of uranium (VI) ion. Environ Sci Pollut Res 22:17998CrossRefGoogle Scholar
  9. 9.
    Mona S, Kaushik A (2015) Screening metal-dye-tolerant photoautotrophic microbes from textile wastewaters for biohydrogen production. J Appl Phycol 27:1185CrossRefGoogle Scholar
  10. 10.
    Birungi ZS, Chirwa EMN, Botai OJ (2017) Competitive adsorption in a ternary system of toxic metals and rare earth elements using Desmodesmus multivariabilis: empirical and kinetic modelling. J Appl Phycol 29:2899CrossRefGoogle Scholar
  11. 11.
    Heidari F, Riahi H, Aghamiri MR, Shariatmadari Z, Zakeri F (2017) Isolation of an efficient biosorbent of radionuclides (226Ra, 238U):green algae from high-background radiation areas in Iran. J Appl Phycol.  https://doi.org/10.1007/s10811-017-1151-1 CrossRefGoogle Scholar
  12. 12.
    Sarı A, Tuzen M (2009) Equilibrium, thermodynamic and kinetic studies on aluminum biosorption from aqueous solution by brown algae (Padina pavonica) biomass. J Hazard Mater 171:973CrossRefPubMedGoogle Scholar
  13. 13.
    Liu YH, Wang YQ, Zhang ZB, Cao XH, Nie WB, Li Q, Hua R (2013) Removal of uranium from aqueous solution by a low cost and highefficient adsorbent. Appl Surf Sci 273:68CrossRefGoogle Scholar
  14. 14.
    Bayramoglu G, Arica MY (2017) Polyethylenimine and tris(2-aminoethyl)amine modified p(GA–EGMA)microbeads for sorption of uranium ions: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 312:293CrossRefGoogle Scholar
  15. 15.
    Bayramoglu G, Arica MY (2016) Amidoxime functionalized Trametes trogii pellets for removal of uranium(VI) from aqueous medium. J Radioanal Nucl Chem 307:373CrossRefGoogle Scholar
  16. 16.
    Bayramoglu G, Akbulut A, Acıkgoz-Erkaya I, Arica MY (2017) Uranium sorption by native and nitrilotriacetate-modified Bangia atropurpurea biomass: kinetics and thermodynamics. J Appl Phycol 30:649CrossRefGoogle Scholar
  17. 17.
    Arica MY, Bayramoglu G (2016) Polyaniline coated magnetic carboxymethylcellulose beads for selective removal of uranium ions from aqueous solution. J Radioanal Nucl Chem 310:711CrossRefGoogle Scholar
  18. 18.
    Saleh TA, Tuzen M, Sarı A (2017) Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem Eng Res Des 117:218CrossRefGoogle Scholar
  19. 19.
    Bayramoglu G, Arica MY (2016) MCM-41 silica particles grafted with polyacrylonitrile: modification into amidoxime and carboxyl groups for enhanced uranium removal from aqueous medium. Microporous Mesoporous Mater 226:117CrossRefGoogle Scholar
  20. 20.
    Cheng W, Ding C, Nie X, Duan T, Ding R (2017) Fabrication of 3D macroscopic graphene oxide composites supported by montmorillonite for efficient U(VI) wastewater purification. ACS Sustain Chem Eng 5:5503CrossRefGoogle Scholar
  21. 21.
    Ahmed SH, El Sheikh EM, Morsy AMA (2014) Potentiality of uranium biosorption from nitric acid solutions using shrimp shells. J Environ Radioact 134:120CrossRefPubMedGoogle Scholar
  22. 22.
    Kausar A, Bhatti HN, MacKinnon G (2013) Equilibrium, kinetic and thermodynamic studies on the removal of U (VI) by low cost agricultural waste. Colloid Surf B 111:124CrossRefGoogle Scholar
  23. 23.
    Saleem N, Bhatti HN (2011) Adsorptive removal and recovery of U (VI) by citrus waste biomass. BioResources 6:2522Google Scholar
  24. 24.
    Anirudhan TS, Bringle CD, EtS Rijith (2009) Removal of uranium(VI) from aqueous solution and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. Desalin Water Treat 12:16CrossRefGoogle Scholar
  25. 25.
    Miretzky P, Cirelli AF (2010) Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mater 180:1CrossRefPubMedGoogle Scholar
  26. 26.
    Chen JP, Yang L (2005) Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption. Ind Eng Chem Res 44:9931CrossRefGoogle Scholar
  27. 27.
    Bulgariu L, Bulgariu D, Macoveanu M (2011) Adsorptive performances of alkaline treated peat for heavy metals removal. Sep Sci Technol 46:1023CrossRefGoogle Scholar
  28. 28.
    Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165CrossRefPubMedGoogle Scholar
  29. 29.
    Vanderborght M, Van Grieken E (1977) Enrichment of trace metals in water by adsorption on activated carbon. Anal Chem 49:311CrossRefPubMedGoogle Scholar
  30. 30.
    Lagergren SY (1898) Zur Theorie der sogenannten Adsorption gelöster Stoffe, Kungliga Svenska Vetenskapsakad. Handlingar 24(4):1Google Scholar
  31. 31.
    Ho YS, McKay G (1999) Pseudo-second-order model for sorption processes. Process Biochem 34:451CrossRefGoogle Scholar
  32. 32.
    Weber W Jr, Morris JC (1963) Kinetics of adsorption on carbon from solutions. J Sanit Eng Div 89:31Google Scholar
  33. 33.
    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1362CrossRefGoogle Scholar
  34. 34.
    Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem-US 57(4):385Google Scholar
  35. 35.
    Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12:327Google Scholar
  36. 36.
    Webber TN, Chakravarti RK (1974) Pore and solid diffusion models for fixed bed adsorbers. J Am Inst Chem Eng 20:228CrossRefGoogle Scholar
  37. 37.
    Babaeivelni K, Khodadoust AP (2013) Adsorption of fluoride onto crystalline titanium dioxide: effect of pH, ionic strength and co-existing ions. J Colloid Interface Sci 394:419CrossRefPubMedGoogle Scholar
  38. 38.
    Perez Marin AB, Agilar MI, Meseguer VF, Ortuno JF, Saez J, Llorens M (2009) Biosorption of chromium (III) by orange waste: batch and continuous studies. Chem Eng J 155:199CrossRefGoogle Scholar
  39. 39.
    Ahmed MJK, Ahmaruzzaman M (2016) A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J Water Process Eng 10:39CrossRefGoogle Scholar
  40. 40.
    Oliveira RC, Hammer P, Guibal E, Taulemesse JM, Garcia O (2014) Characterization of metal–biomass interactions in the lanthanum(III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: preliminary studies. Chem Eng J 239:381CrossRefGoogle Scholar
  41. 41.
    Feng N, Guo X, Liang S (2009) Adsorption study of copper (II) by chemically modified orange peel. J Hazard Mater 164:1286CrossRefPubMedGoogle Scholar
  42. 42.
    Schiewer S, Balaria A (2009) Biosorption of Pb2+ by original and protonated citrus peel: equilibrium, kinetics, and mechannism. Chem Eng J 146:211CrossRefGoogle Scholar
  43. 43.
    Zhao C, Liu J, Li X, Li F, Tu H, Sun Q, Liao J, Yang J, Yang Y, Liu N (2016) Biosorption and bioaccumulation behavior of uranium on Bacillus sp. dwc-2: investigation by box-Behenken design method. J Mol Liq 221:156CrossRefGoogle Scholar
  44. 44.
    Sun Y, Ding C, Cheng W, Wang X (2014) Simultaneous adsorption and reduction of U (VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J Hazard Mater 280:399CrossRefPubMedGoogle Scholar
  45. 45.
    Wang F, Tan L, Liu Q, Li R, Li Z, Zhang H, Hu S, Liu L, Wang J (2015) Biosorption characteristics of Uranium (VI) from aqueous solution by pollen pini. J Environ Radioact 150:93CrossRefPubMedGoogle Scholar
  46. 46.
    Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL (2000) The removal of heavy metal from aqueous solution by saw dust adsorption–removal of copper. J Hazard Mater 80:33CrossRefPubMedGoogle Scholar
  47. 47.
    Kostić M, Radović M, Mitrović J, Antonijević M, Bojić D, Petrović M, Bojić A (2014) Using xanthated Lagenaria vulgaris shell biosorbent for removal of Pb(II) ions from wastewater. J Iran Chem Soc 11:565CrossRefGoogle Scholar
  48. 48.
    Coleman NT, McClung AC, Moore DP (1956) Formation constants for Cu(II)-peat complexes. Science 123:330CrossRefPubMedGoogle Scholar
  49. 49.
    OuYang XK, Jin RN, Yang LP, Wen ZS, Yang LY, Wang YG, Wang CY (2014) Partially hydroliyzed Bamboo (Phyllostachys heterocycla) as a porous bioadsorbent for the removal of Pb(II) from aqueous mixtures. J Agric Food Chem 62:6007CrossRefPubMedGoogle Scholar
  50. 50.
    Ofomaja AE (2010) Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust. Bioresource Technol 101:5868CrossRefGoogle Scholar
  51. 51.
    Cheung WH, Szeto YS, McKay G (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresource Technol 98:2897CrossRefGoogle Scholar
  52. 52.
    Waranusantigul P, Pokethitiyook P, Kruatracchue M, Upatham ES (2003) Kinetics of basic dye (methylene blue) biosorption by giany duckweed (Spirodela polyrrhiza). Environ Pollut 125:385CrossRefPubMedGoogle Scholar
  53. 53.
    Igwe JC, Abia AA (2007) Equilibrium sorption isotherm studies of Cd (II), Pb(II) and Zn (II) ions detoxification from waste water using unmodified and EDTA-modified maize husk. Electron J Biotechnol 10:536CrossRefGoogle Scholar
  54. 54.
    Evangelou VP (1998) Environmental soil and water chemistry: principles and applications. Wiley, New YorkGoogle Scholar
  55. 55.
    Kumar J, Balomajumder C, Mondal P (2011) Application of agro-based biomasses for zinc removal from wastewater—a review. Clean Soil Air Water 39:641CrossRefGoogle Scholar
  56. 56.
    Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616CrossRefPubMedGoogle Scholar
  57. 57.
    Li X, Li F, Jin Y, Jiang C (2015) The uptake of uranium by tea wastes investigated by batch, spectroscopic and modeling techniques. J Mol Liq 209:413CrossRefGoogle Scholar
  58. 58.
    Kausar A, Bhatti HN, MacKinnon G (2013) Equlibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste. Colloid Surf B 111:124CrossRefGoogle Scholar
  59. 59.
    Saleem N, Bhatti HN (2011) Adsorptive removal and recovery of U(VI) by citrus waste biomass. BioResources 6(2):2522Google Scholar
  60. 60.
    Nie X, Dong F, Liu M, Sun S, Yang G, Zhang W, Qin Y, Ma J, Huang R, Gong J (2016) Removel of uranium from aqueous solutions by spirodela punctata as the mechanism of biomineralization. Procedia Environ Sci 31:382CrossRefGoogle Scholar
  61. 61.
    Rahmati A, Ghaemi A, Samadfam M (2012) Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin. Ann Nucl Energy 39:42CrossRefGoogle Scholar
  62. 62.
    Humelnicu D, Popovici E, Dvininov E, Mita C (2009) Study on the retention of uranyl ions on modified clays with titanium oxide. J Radioanal Nucl Chem 279:131CrossRefGoogle Scholar
  63. 63.
    Das D, Sureshkumar MK, Koley S, Mithal N, Pillai CGS (2010) Sorption of uranium on magnetite nanoparticles. J Radioanal Nucl Chem 285:447CrossRefGoogle Scholar
  64. 64.
    Bai J, Wu X, Fan F, Tian W, Yin X, Zhao L, Fan F, Li Z, Tian L, Qin Z, Guo J (2012) Biosorption of uranium by magnetically modified Rhodotorula glutinis. Enzyme Microb Technol 51:382CrossRefPubMedGoogle Scholar
  65. 65.
    Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Wu XL, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40CrossRefPubMedGoogle Scholar
  66. 66.
    Nilchi A, Dehaghan TS, Garmarodi SR (2013) Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination 321:67CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesUniversity of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations