Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 319, Issue 1, pp 227–235 | Cite as

Adsorption of U(VI) by Elodea nuttallii: equilibrium, kinetic and mechanism analysis

  • Hao Yang
  • Xuegang LuoEmail author
  • Hanlin Ding
  • Xiaonuo Zhang
Article

Abstract

This study had been devoted to investigate the adsorption capacity and adsorption mechanism of Elodea nuttallii. Experimental investigation related to the adsorption behaviors of E. nuttallii toward uranium, regeneration and U(VI) adsorption capacity. The results showed that with the initial U(VI) concentration increased, the maximum adsorption capacity was reached at 3.92 mg/g, regeneration adsorption rate reached 55%, adsorption of U(VI) progress could be described by the Langmuir model and pseudo-second-order kinetics. FT-IR analysis indicated that multiple functional groups involve together in the process of adsorbing U(VI). Therefore, E. nuttallii is a potential absorbent for U(VI) removal from aqueous solution.

Keywords

Elodea nuttallii Adsorption Uranium Kinetics 

Notes

Acknowledgements

This work was supported by the Country National Defense Fundamental Researh Program (Grant 16ZG6101). The Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology have offered aid, the authors present our sincere thanks here.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest to this work.

References

  1. 1.
    Yang Y, Meng J (2017) Environment pollution state and improvement measures in rural areas of heilongjiang, China. Nat Environ Pollut Technol 16(4):1087–1093Google Scholar
  2. 2.
    Li F, Li X, Cui P (2018) Detoxification of U(VI) by Paecilomyces catenlannulatus investigated by batch, XANES and EXAFS techniques. J Environ Radioactiv 189:24–30CrossRefGoogle Scholar
  3. 3.
    Minas F, Chandravanshi BS, Leta S (2017) Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia. Chem Int 3(4):291–305Google Scholar
  4. 4.
    Sar SK, Diwan V, Biswas S, Singh S, Sahu M, Jindal MK, Arora A (2018) Study of uranium level in groundwater of Balod district of Chhattisgarh state, India and assessment of health risk. Hum Ecol Risk Assess 24:691–698CrossRefGoogle Scholar
  5. 5.
    Hamutoko JT, Mapani BS, Ellmies R, Bittner A, Kuells C (2014) A fingerprinting method for the identification of uranium sources in alluvial aquifers: an example from the Khan and Swakop Rivers, Namibia. Phys Chem Earth 72–75:34–42CrossRefGoogle Scholar
  6. 6.
    Nada FT, Laith AN, Enas MY (2014) Uranium concentration and its associated health hazards in drinking water of Nineveh Province (Iraq). World Appl Sci J 31(11):1938–1944Google Scholar
  7. 7.
    Fan F-L, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Wu XL, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioactiv 106:40–46CrossRefGoogle Scholar
  8. 8.
    Xie Y, Ren L, Zhu X, Gou X, Chen SY (2018) Physical and chemical treatments for removal of perchlorate from water—a review. Process Saf Environ 116:180–198CrossRefGoogle Scholar
  9. 9.
    Mojiri A, Aziz HA, Zaman NQ, Aziz SQ, Zahed MA (2016) Metals removal from municipal landfill leachate and wastewater using adsorbents combined with biological method. Desalin Water Treat 57:2819–2833CrossRefGoogle Scholar
  10. 10.
    Charles W, Ho G (2017) Biological methods of odor removal in solid waste treatment facilities. Curr Dev Biotechnol Bioeng.  https://doi.org/10.1016/B978-0-444-63664-5.00015-0 CrossRefGoogle Scholar
  11. 11.
    Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Biorem Biodegrad 2(4):178–191Google Scholar
  12. 12.
    Li Y, Zhao J, Guo J, Liu MJ, Xu QL, Li H, Li YF, Zheng L, Zhang ZY, Gao YX (2017) Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere 182:293–300CrossRefGoogle Scholar
  13. 13.
    Sharma S, Singh B, Thulasidas SK, Kulkarni MJ, Natarajan V, Manchanda VK (2016) Evaluation of terrestrial plants extracts for uranium sorption and characterization of potent phytoconstituents. Int J Phytoremediat 18:10–15CrossRefGoogle Scholar
  14. 14.
    Chen BD, Zhu Y-G, Smith FA (2006) Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere 62:1464–1473CrossRefGoogle Scholar
  15. 15.
    Mkandawire M, Taubert B, Dudel EG (2004) Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytoremediat 6:347–362CrossRefGoogle Scholar
  16. 16.
    Schaumburg J, Schranz C, Foerster J, Gutowski A, Hofmann G, Meilinger P, Schneider S, Schmedtje U (2004) Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the water framework directive. Limnologica 34:283–301CrossRefGoogle Scholar
  17. 17.
    Jha VN, Tripathi RM, Sethy NK, Sahoo SK (2016) Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India. Sci Total Environ 539:175–184CrossRefGoogle Scholar
  18. 18.
    Singh D, Gupta R, Tiwari A (2011) Phytoremediation of lead from wastewater using aquatic plants. Int J Biomed Res 2:411–421Google Scholar
  19. 19.
    Abu Bakar AF, Yusoff I, Fatt NT, Othman F, Ashraf MA (2013) Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata). Biomed Res Int 2013:1–7CrossRefGoogle Scholar
  20. 20.
    Kunii H (1984) Seasonal growth and profile structure development of Elodea nuttallii (Planch.) St, John in pond Ojaga-ike, Japan. Aquat Bot 18:239–247CrossRefGoogle Scholar
  21. 21.
    Angelstein S, Schubert H (2008) Elodea nuttallii: uptake, translocation and release of phosphorus. Aquat Biol 3:209–216CrossRefGoogle Scholar
  22. 22.
    Yi ZJ, Yao J, Zhu MJ, Chen HL, Wang F, Yuan ZM, Liu X (2016) Batch study of uranium biosorption by Elodea canadensis biomass. J Radioanal Nucl Chem 310(2):1–9CrossRefGoogle Scholar
  23. 23.
    Saha P, Shinde O, Sarkar S (2017) Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremediat 19:87–96CrossRefGoogle Scholar
  24. 24.
    Imtiaz M, Ashraf M, Rizwan MS, Nawaz MA, Rizwan M, Mehmood S, Yousaf B, Yuan Y, Ditta A, Mumtaz MA, Ali M, Mahmood S, Tu SX (2018) Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: effects on cell death, ROS and antioxidative systems. Ecotox Environ Safe 158:139–144CrossRefGoogle Scholar
  25. 25.
    Fathi RA, Godbold DL, Al-Salih HS, Jones D (2014) Potential of Phytoremediation to clean up uranium-contaminated soil with Acacia species. Res J Environ Earth Sci 4:82–91Google Scholar
  26. 26.
    Li GY, Hu N, Ding DX, Zheng JF, Liu YL, Wang YD, Nie XQ (2011) Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bull Environ Contam Toxicol 86:646–652CrossRefGoogle Scholar
  27. 27.
    Mkandawire M, Taubert B, Dudel EG (2004) Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytorem 6:347–362CrossRefGoogle Scholar
  28. 28.
    Danh LT, Truong P, Mammucari R, Foster N (2014) A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. Int J Phytorem 16:429–453CrossRefGoogle Scholar
  29. 29.
    Department of Agronomy, J.N.K.V.V., Jabalpur (M.P.), Rajput A (2017) Physiological parameters leaf area index, crop growth rate, relative growth rate and net assimilation rate of different varieties of rice grown under different planting geometries and depths in SRI. Int J Pure Appl Biosci 5:362–367Google Scholar
  30. 30.
    Marwani HM, Albishri HM, Jalal TA, Soliman EM (2017) Study of isotherm and kinetic models of lanthanum adsorption on activated carbon loaded with recently synthesized Schiff’s base. Arab J Chem 10:S1032–S1040CrossRefGoogle Scholar
  31. 31.
    Geider R, Graziano L, Michaelmchay R (1998) Responses of the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. Eur J Phycol 33(4):315–322CrossRefGoogle Scholar
  32. 32.
    Zhou HP, Zhao JF, Yang YQ, Chen CX, Liu YF, Jin XH, Chen LM, Li XY, Deng XW, Schumaker KS, Guo Y (2012) Ubiquitin-specific protease16 modulates salt tolerance in arabidopsis by regulating Na+/H+ antiport activity and serine hydroxymethyltransferase stability. Plant Cell 24(12):5106–5122CrossRefGoogle Scholar
  33. 33.
    Feiler U, Hoss S, Ahlf W, Gilberg D, Hammers-Wirtz M, Hollert H, Meller M, Neumann-Hensel H, Ottermanns R, Seiler TB, Spira D, Heininger P (2013) Sediment contact tests as a tool for the assessment of sediment quality in German waters. Environ Toxicol Chem 32(1):144–155CrossRefGoogle Scholar
  34. 34.
    Wołowicz A, Hubicki Z (2012) Applicability of new acrylic, weakly basic anion exchanger purolite A-830 of very high capacity in removal of palladium(II) chloro-complexes. Ind Eng Chem Res 51:7223–7230CrossRefGoogle Scholar
  35. 35.
    Singh J, Sharma M, Basu S (2018) Heavy metal ions adsorption and photodegradation of remazol black XP by iron oxide/silica monoliths: kinetic and equilibrium modelling. Adv Powder Technol 29:2268–2279CrossRefGoogle Scholar
  36. 36.
    Bellam R, Jaganyi D, Mambanda A, Robinson R (2018) Role of a 2,3-bis(pyridyl)pyrazinyl chelate bridging ligand in the reactivity of Ru(ii)–Pt(ii) dinuclear complexes on the substitution of chlorides by thiourea nucleophiles—a kinetic study. New J Chem 42:12557–12569CrossRefGoogle Scholar
  37. 37.
    Kučić D (2018) Batch adsorption of Cr(VI) ions on zeolite and agroindustrial waste. Chem Biochem Eng Q 31:497–507CrossRefGoogle Scholar
  38. 38.
    Toyoshima Y (2017) Origin of pseudo second order reaction in a-Si: H growth. e-J Surf Sci Nanotechnol 15:93–95CrossRefGoogle Scholar
  39. 39.
    Huang R, Liu Q, Huo J, Yang B (2017) Adsorption of methyl orange onto protonated cross-linked chitosan. Arab J Chem 10:24–32CrossRefGoogle Scholar
  40. 40.
    Yuan GY, Tian Y, Liu J, Tu H, Liao JL, Yang JJ, Yang YY, Wang DQ, Liu N (2017) Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution. Chem Eng J 326:691–699CrossRefGoogle Scholar
  41. 41.
    Ngee LH, Kassim A, Ming HN, Abdullah DK, Abdullah AH, Yarmo MA, Kian YS (2008) Phase behavioural study of palm-based lauryl alcohol ethoxylates. Pertanika J Sci Technol 16(2):141–156Google Scholar
  42. 42.
    Hirmizi NHM, Bakar MA, Tan WL, Ismail J, See CH (2012) Electrical and thermal behavior of copper-epoxy nanocomposites prepared via aqueous to organic phase transfer technique. J Nanomater 11:1–11CrossRefGoogle Scholar
  43. 43.
    Schmeide K, Sachs S, Bubner M, Reich T, Heise KH, Bernhard G (2003) Interaction of uranium(VI) with various modified and unmodified natural and synthetic humic substances studied by EXAFS and FTIR spectroscopy. Inorg Chim Acta 351(1):133–140CrossRefGoogle Scholar
  44. 44.
    Ganesh S, Prakash S, Jayakumar R (2003) Spectroscopic investigation on gel-forming β-sheet assemblage of peptide derivatives. Biopolymers 70(3):346–354CrossRefGoogle Scholar
  45. 45.
    Patel NB, Patel SD, Patel AL, Patel JC, Patel JN (2011) Synthesis and antimicrobial studies of Schiff bases of fluoroquinolone. India J Chem 50(11):1645–1657Google Scholar
  46. 46.
    Cabrera-Lara LI (2017) Reaction parameters for controlled sonosynthesis of gold nanoparticles. J Mex Chem Soc 59:119–129CrossRefGoogle Scholar
  47. 47.
    Frost RL, Bahfenne S, Čejka J, Sejkora J, Plásil J, Palmer SJ, Keeffe EC, Němec I (2011) Dussertite BaFe3 3+(AsO4)2(OH)5-a Raman spectroscopic study of a hydroxy-arsenate mineral. J Raman Spectrosc 42:56–61CrossRefGoogle Scholar
  48. 48.
    Černe M, Smodiš B, Štrok M (2011) Uptake of radionuclides by a common reed (Phragmites australis (Cav.) Trin. ex Steud.) grown in the vicinity of the former uranium mine at Žirovski vrh. Nucl Eng Des 241:1282–1286CrossRefGoogle Scholar
  49. 49.
    Favas PJC, Pratas J (2013) Uptake of uranium by native aquatic plants: potential for bioindication and phytoremediation. E3S Web Conf 1:13007 p1–p3Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Hao Yang
    • 1
    • 2
  • Xuegang Luo
    • 1
    • 2
    Email author
  • Hanlin Ding
    • 1
    • 2
  • Xiaonuo Zhang
    • 1
    • 3
  1. 1.School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
  2. 2.Engineering Research Center of Biomass Materials, Ministry of EducationSouthwest University of Science and TechnologyMianyangChina
  3. 3.School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations