Journal of Radioanalytical and Nuclear Chemistry

, Volume 319, Issue 1, pp 365–377 | Cite as

The influence of pH on diffusion of 75Se(IV) in Beishan granite

  • Chunli Wang
  • Xiaoyu Yang
  • Fangxin Wei
  • Jiangang He
  • Liye Qi
  • Chunli LiuEmail author


The through-diffusion method and batch sorption experiments were used to explore the influence of pH on the diffusion behavior of 75Se(IV) in matrix Beishan granite (BsG). In the pH range of 2.0–8.5, the De values of 75Se(IV) in BsG decreased first and then increased with pH increasing, while the changing trend of Kd was nearly opposite. It was speculated that the influence of pH on the diffusion of 75Se(IV) in BsG was due to the joint effects of different species distribution of Se, change in surface charge of BsG and change in ionic strength at various pH values.


Diffusion 75Se(IV) Beishan granite(BsG) pH 



We thank the Special Foundation for High-level Radioactive Waste Disposal (2012-851) and the National Natural Science Foundation of China (NSFC, No. 11475008, U1530112, U1730245) for financial support. In addition, we are grateful to the 1W2B beamline at the Beijing Synchrotron Radiation Facility (Beijing, China) for providing beam time and assistance for the XAS measurements. The authors declare that no conflict of interest exists.


  1. 1.
    Ewing RC (1999) Radioactive waste: less geology in the geological disposal of nuclear waste. Science 286(5439):415–417Google Scholar
  2. 2.
    Soler JM, Landa J, Havlova V, Tachi Y, Ebina T, Sardini P, Siitari-Kauppi M, Eikenberg J, Martin AJ (2015) Comparative modeling of an in situ diffusion experiment in granite at the Grimsel Test Site. J Contam Hydrol 179:89–101PubMedGoogle Scholar
  3. 3.
    Chapman N, Hooper A (2012) The disposal of radioactive wastes underground. Proc Geol Assoc 123(1):46–63Google Scholar
  4. 4.
    Agbogun HMD, Al TA, Hussein EMA (2013) Three dimensional imaging of porosity and tracer concentration distributions in a dolostone sample during diffusion experiments using X-ray micro-CT. J Contam Hydrol 145(1):44–53PubMedGoogle Scholar
  5. 5.
    Poteri A, Nordman H, Pulkkanen V-M, Smith P (2014) Radionuclide Transport in the Repository Near-Field and Far-Field. POSIVA Report 2014-2: 17-24. Posiva Oy.
  6. 6.
    Grambow B (2008) Mobile fission and activation products in nuclear waste disposal. J Contam Hydrol 102(3):180–186PubMedGoogle Scholar
  7. 7.
    Wang J (2010) High-level radioactive waste disposal in China: update 2010. J Rock Mech Geotech Eng 2(1):1–11Google Scholar
  8. 8.
    Descostes M, Blin V, Bazer-Bachi F, Meier P, Grenut B, Radwan J, Schlegel ML, Buschaert S, Coelho D, Tevissen E (2008) Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones (Meuse/Haute–Marne, France). Appl Geochem 23(4):655–677Google Scholar
  9. 9.
    Fernández-Martínez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110Google Scholar
  10. 10.
    Hjerpe T, Ikonen ATK, Broed R (2010) Biosphere Assessment Report 2009. POSIVA Report 2010-3: 36-38. Posiva Oy.
  11. 11.
    Montavon G, Guo Z, Lützenkirchen J, Alhajji E, Kedziorek MAM, Bourg ACM, Grambow B (2009) Interaction of selenite with MX-80 bentonite: effect of minor phases, pH, selenite loading, solution composition and compaction. Colloids Surf A 332(2–3):71–77Google Scholar
  12. 12.
    Charlet L, Kang M, Bardelli F, Kirsch R, Géhin A, Grenèche J-M, Chen F (2012) Nanocomposite pyrite–greigite reactivity toward Se(IV)/Se(VI). Environ Sci Technol 46(9):4869–4876PubMedGoogle Scholar
  13. 13.
    Scheinost AC, Charlet L (2008) Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environ Sci Technol 42(6):1984–1989PubMedGoogle Scholar
  14. 14.
    Sato H, Miyamoto S (2004) Diffusion behaviour of selenite and hydroselenide in compacted bentonite. Appl Clay Sci 26(1):47–55Google Scholar
  15. 15.
    Tsai T-L, Lee C-P, Lin T-Y, Wei H-J, Men L-C (2010) Evaluation of sorption and diffusion behavior of selenium in crushed granite by through-diffusion column tests. J Radioanal Nucl Chem 285(3):733–739Google Scholar
  16. 16.
    Wu T, Wang H, Zheng Q, Zhao YL, Van Loon LR (2014) Diffusion behavior of Se(IV) and Re(VII) in GMZ bentonite. Appl Clay Sci 101:136–140Google Scholar
  17. 17.
    Ikonen J, Voutilainen M, Söderlund M, Jokelainen L, Siitari-Kauppi M, Martin A (2016) Sorption and diffusion of selenium oxyanions in granitic rock. J Contam Hydrol 192:203–211PubMedGoogle Scholar
  18. 18.
    He J, Ma B, Kang M, Wang C, Nie Z, Liu C (2017) Migration of 75Se(IV) in crushed Beishan granite: effects of the iron content. J Hazard Mater 324:564–572PubMedGoogle Scholar
  19. 19.
    Wu T, Wang Z, Wang H, Zhang Z, Van Loon LR (2017) Salt effects on Re(VII) and Se(IV) diffusion in bentonite. Appl Clay Sci 141:104–110Google Scholar
  20. 20.
    Yang X, Ge X, He J, Wang C, Qi L, Wang X, Liu C (2018) Effects of mineral compositions on matrix diffusion and sorption of 75Se(IV) in granite. Environ Sci Technol 52(3):1320–1329PubMedGoogle Scholar
  21. 21.
    He J, Shi Y, Yang X, Zhou W, Li Y, Liu C (2018) Influence of Fe(II) on the Se(IV) sorption under oxic/anoxic conditions using bentonite. Chemosphere 193:376–384PubMedGoogle Scholar
  22. 22.
    Wersin P, Curti E, Appelo CAJ (2004) Modelling bentonite-water interactions at high solid/liquid ratios: swelling and diffuse double layer effects. Appl Clay Sci 26(1–4):249–257Google Scholar
  23. 23.
    Wang Z, Wang H, Li Q, Xu M, Guo Y, Li J, Wu T (2016) pH effect on Re(VII) and Se(IV) diffusion in compacted GMZ bentonite. Appl Geochem 73:1–7Google Scholar
  24. 24.
    Emerson DW (1990) Notes on mass properties of rocks density, porosity, permeability. Explor Geophys 21(4):209–216Google Scholar
  25. 25.
    Chen T, Sun M, Li C, Tian W, Liu X, Wang L, Wang X, Liu C (2010) The influence of temperature on the diffusion of 125I in Beishan granite. Radiochim Acta 98(5):301–305Google Scholar
  26. 26.
    Li C, Liu XY, Chen T, Tian WY, Zheng Z, Wang LH, Liu CL (2012) The influence of pH on the sorption and diffusion of 99TcO4 in Beishan granite. Radiochim Acta 100(7):449–455Google Scholar
  27. 27.
    Lu CJ, Liu CL, Chen T, Wang J, Wang XY, Su R, Sun JY, Yang RX, Zhang XS (2008) Determination of the effective diffusion coefficient for 125I in Beishan granite. Radiochim Acta 96(2):111–117Google Scholar
  28. 28.
    Li C, Wang CL, Liu XY, Zheng Z, Wang LH, Zhu QQ, Kang ML, Chen T, Liu CL (2012) Effects of ionic strength and humic acid on 99TcO4 sorption and diffusion in Beishan granite. J Radioanal Nucl Chem 293(3):751–756Google Scholar
  29. 29.
    Tertre E, Castet S, Berger G, Loubet M, Giffaut E (2006) Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60°C: experimental and modeling study. Geochim Cosmochim Acta 70(18):4579–4599Google Scholar
  30. 30.
    Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(4):537–541PubMedGoogle Scholar
  31. 31.
    Videnská K, Palágyi Š, Štamberg K, Vodiěková H, Havlová V (2013) Effect of grain size on the sorption and desorption of SeO4 2− and SeO3 2− in columns of crushed granite and fracture infill from granitic water under dynamic conditions. J Radioanal Nucl Chem 298(1):547–554Google Scholar
  32. 32.
    André M, Malmström ME, Neretnieks I (2009) Determination of sorption properties of intact rock samples: New methods based on electromigration. J Contam Hydrol 103(3–4):71–81PubMedGoogle Scholar
  33. 33.
    Olin Å, Noläng B, Osadchii EG, Öhman L-O, Rosén E (2004) Chemical thermodynamics of selenium. Elsevier, UppsalaGoogle Scholar
  34. 34.
    Zhu J, Wang X, Chen T, Liu C (2012) Chemical speciation code CHEMSPEC(C ++) and its applications. Sci Sin Chim 42(6):856Google Scholar
  35. 35.
    Van Loon LR, Glaus MA, Müller W (2007) Anion exclusion effects in compacted bentonites: towards a better understanding of anion diffusion. Appl Geochem 22(11):2536–2552Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Chunli Wang
    • 1
    • 2
  • Xiaoyu Yang
    • 1
  • Fangxin Wei
    • 2
  • Jiangang He
    • 1
  • Liye Qi
    • 1
  • Chunli Liu
    • 1
    Email author
  1. 1.Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Nuclear and Radiation Safety CenterBeijingChina

Personalised recommendations