Journal of Radioanalytical and Nuclear Chemistry

, Volume 319, Issue 1, pp 379–386 | Cite as

Poly(amidoxime) functionalized MoS2 for efficient adsorption of uranium(VI) in aqueous solutions

  • Dadong ShaoEmail author
  • Xinghao Liu
  • Tasawar Hayat
  • Jiaxing Li
  • Xuemei RenEmail author


A novel adsorbent for enrichment of trace uranium (U(VI)) ions in aqueous solution is designed based on the excellent adsorption capacity of poly(amidoxime) (PAO) and the excellent chemical properties of MoS2. Specifically, PAO/MoS2 is prepared by plasma induced polymerization of acrylonitrile on MoS2 surfaces, followed by amidoximation treatment with NH2OH. This as-prepared PAO/MoS2 was applied as adsorbent for the separation of U(VI) from aqueous solutions. The modified PAO enhance greatly the adsorption capability of MoS2 for U(VI) in aqueous solutions. PAO/MoS2 presents excellent selectivity for U(VI) in aqueous solution, suggesting PAO/MoS2 can separate U(VI) with high selectivity.


Uranium Adsorption Amidoxime MoS2 Plasma technique 



This work supported by the National Natural Science Foundation of China (11675210), the NSAF (U1530131).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sholl DS, Lively RP (2016) Seven chemical separations to change the world. Nature 532:435–437CrossRefGoogle Scholar
  2. 2.
    Xu M, Han X, Hua D (2017) Polyoxime-functionalized magnetic nanoparticles for uranium adsorption with high selectivity over vanadium. J Mater Chem A 5:12278–12284CrossRefGoogle Scholar
  3. 3.
    Li S, Wang X, Huang Z et al (2016) Sorption and desorption of uranium(VI) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances. J Radioanal Nucl Chem 308:877–886CrossRefGoogle Scholar
  4. 4.
    Shao D, Wang X, Li J et al (2015) Reductive immobilization of uranium by PAAM–FeS/Fe3O4 magnetic composites. Environ Sci Water Res 1:169–176CrossRefGoogle Scholar
  5. 5.
    Wang Y, Gu Z, Yang J (2014) Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI). Appl Surf Sci 320:10–20CrossRefGoogle Scholar
  6. 6.
    Tan L, Tan X, Ren X et al (2018) Influence of pH, soil humic acid, ionic strength and temperature on sorption of U(VI) onto attapulgite. J Radioanal Nucl Chem 316:981–991CrossRefGoogle Scholar
  7. 7.
    Abney CW, Das S, Mayes RT (2016) A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer. Phys Chem Chem Phys 18:23462–23468CrossRefGoogle Scholar
  8. 8.
    Shao D, Li Y, Wang X et al (2017) Phosphate-functionalized polyethylene with high adsorption of uranium(VI). ACS Omega 2:3267–3275CrossRefGoogle Scholar
  9. 9.
    Shao D, Li J, Wang X (2014) Poly(amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater. Sci China Chem 57:1449–1458CrossRefGoogle Scholar
  10. 10.
    Zhang F, Chen M, Hu S et al (2017) Chemical treatments on the cuticle layer enhancing the uranium(VI) uptake from aqueous solution by amidoximated wool fibers. J Radioanal Nucl Chem 314:1927–1937CrossRefGoogle Scholar
  11. 11.
    Yue Q, Shao Z, Chang S et al (2013) Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res Lett 8:425CrossRefGoogle Scholar
  12. 12.
    Zhang X, Lai Z, Tan C et al (2016) Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew Chem Int Ed 55:8816–8838CrossRefGoogle Scholar
  13. 13.
    Shen L, Han X, Qian J et al (2017) Amidoximated poly(vinyl imidazole)-functionalized molybdenum disulfide sheets for efficient sorption of a uranyl tricarbonate complex from aqueous solutions. RSC Adv 7:10791–10797CrossRefGoogle Scholar
  14. 14.
    Yang S, Hua M, Shen L et al (2018) Phosphonate and carboxylic acid co-functionalized MoS2 sheets for efficient sorption of uranium and europium: multiple groups for broad-spectrum adsorption. J Hazard Mater 354:191–197CrossRefGoogle Scholar
  15. 15.
    Aghagoli MJ, Shemirani F (2017) Hybrid nanosheets composed of molybdenum disulfide and reduced graphene oxide for enhanced solid phase extraction of Pb(II) and Ni(II). Microchim Acta 184:237–244CrossRefGoogle Scholar
  16. 16.
    Nguyen EP, Carey BJ, Ou JZ et al (2015) Electronic tuning of 2D MoS2 through surface functionalization. Adv Mater 27:6225–6229CrossRefGoogle Scholar
  17. 17.
    Backes C, Berner NC, Chen X (2015) Functionalization of liquid-exfoliated two-dimensional 2H-MoS2. Angew Chem Int Ed 54:2638–2642CrossRefGoogle Scholar
  18. 18.
    Chen X, Berner NC, Backes C et al (2016) Functionalization of two-dimensional MoS2: on the reaction between MoS2 and organic thiols. Angew Chem Int Ed 55:5803–5808CrossRefGoogle Scholar
  19. 19.
    Knirsch KC, Berner NC, Nerl HC et al (2015) Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 9:6018–6030CrossRefGoogle Scholar
  20. 20.
    Sreeprasad TS, Nguyen P, Kim N et al (2013) Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. Nano Lett 13:4434–4441CrossRefGoogle Scholar
  21. 21.
    Rao BG, Matte HSSR, Rao CNR (2012) Decoration of few-layer graphene-like MoS2 and MoSe2 by noble metal nanoparticles. J Clust Sci 23:929–937CrossRefGoogle Scholar
  22. 22.
    Pramoda K, Gupta U, Ahmad I et al (2016) Assemblies of covalently cross-linked nanosheets of MoS2 and of MoS2–RGO: synthesis and novel properties. J Mater Chem A 4:8989–8994CrossRefGoogle Scholar
  23. 23.
    Rathi N, Rathi S, Lee I et al (2016) Reduction of persistent photoconductivity in a few-layer MoS2 field-effect transistor by graphene oxide functionalization. RSC Adv 6:23961–23967CrossRefGoogle Scholar
  24. 24.
    Worsley MA, Shin SJ, Merrill MD et al (2015) Ultralow density, monolithic WS2, MoS2, and MoS2/graphene aerogels. ACS Nano 9:4698–4705CrossRefGoogle Scholar
  25. 25.
    Hu X, Deng F, Huang W et al (2018) The band structure control of visible-light-driven rGO/ZnS-MoS2 for excellent photocatalytic degradation performance and long-term stability. Chem Eng J 350:248–256CrossRefGoogle Scholar
  26. 26.
    Dong Y, Jiang H, Deng Z et al (2018) Synthesis and assembly of three-dimensional MoS2/rGO nanovesicles for high-performance lithium storage. Chem Eng J 350:1066–1072CrossRefGoogle Scholar
  27. 27.
    Sangeetha DN, Selvakumar M (2018) Active-defective activated carbon/MoS2 composites for supercapacitor and hydrogen evolution reactions. Appl Surf Sci 453:132–140CrossRefGoogle Scholar
  28. 28.
    Sun L, Hu H, Zhan D et al (2014) Plasma modified MoS2 nanoflakes for surface enhanced Raman scattering. Small 10:1090–1095CrossRefGoogle Scholar
  29. 29.
    Qian Q, Zhang Z, Hua M et al (2017) Enhanced dielectric deposition on single layer MoS2 with low damage using remote N2 plasma treatment. Nanotechnology 28:175202CrossRefGoogle Scholar
  30. 30.
    Jo WK, Selvam NCS (2016) Fabrication of photostable ternary CdS/MoS2/MWCNTs hybridphotocatalysts with enhanced H2 generation activity. Appl Catal A 525:9–22CrossRefGoogle Scholar
  31. 31.
    Kim Y, Jhon YI, Park J et al (2016) Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2. Sci Rep 6:21405CrossRefGoogle Scholar
  32. 32.
    Shao D, Wang X, Wang X et al (2016) Zero valent iron/poly(amidoxime) adsorbent for the separation and reduction of U(VI). RSC Adv 6:52076–52081CrossRefGoogle Scholar
  33. 33.
    Wang J, Wang X, Zhao G et al (2018) Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium(VI) from aqueous solutions. Chem Eng J 334:569–578CrossRefGoogle Scholar
  34. 34.
    Vishnoi P, Sampath A, Waghmare UV et al (2017) Covalent functionalization of nanosheets of MoS2 and MoSe2 by substituted benzenes and other organic molecules. Chem Eur J 23:886–895CrossRefGoogle Scholar
  35. 35.
    Chi FT, Xiong J, Hou J et al (2013) Improvement in uranium adsorption properties of amidoxime-based adsorbent through cografting of amine group. J Disp Sci Technol 34:604–610CrossRefGoogle Scholar
  36. 36.
    Jia F, Zhang X, Song S (2017) AFM study on the adsorption of Hg2+ on natural molybdenum disulfide in aqueous solutions. Phys Chem Chem Phys 19:3837–3844CrossRefGoogle Scholar
  37. 37.
    Nguyen EP, Carey BJ, Harrison CJ et al (2016) Excitation dependent bidirectional electron transfer in phthalocyanine-functionalized MoS2 nanosheets. Nanoscale 8:16276–16283CrossRefGoogle Scholar
  38. 38.
    Phillips DH, Watson DB, Kelly SD et al (2008) Deposition of uranium precipitates in dolomitic gravel fill. Environ Sci Technol 42:7104–7110CrossRefGoogle Scholar
  39. 39.
    Dong W, Brooks SC (2006) Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method. Environ Sci Technol 40:4689–4695CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Institute of Plasma PhysicsChinese Academy of SciencesHefeiPeople’s Republic of China

Personalised recommendations