Morphology and crystalline evolution of tungsten induced by low-energy helium ions irradiation

  • Hongyu Fan
  • Tao SunEmail author
  • Zhanjun Wu


The responses of polycrystalline tungsten to low energy helium ions irradiation were investigated. SEM and AFM measurements revel that nano-scale helium bubbles formed on the surface of tungsten at earlier stage. The size and number of the formed helium bubbles increase with the increase of helium fluence until they break. Mass loss and sputtering yields analysis indicated that the surface spalling caused by the damage of helium bubbles is the main format of tungsten damage. Helium atom is shown to be not energetically favorable to dissolve, self-trap and cluster at (101) surface in comparison to (111) and (001) surface.


Irradiation damage Tungsten Surface morphology Crystalline He bubble 



The project was supported by Liaoning Provincial Natural Science Foundation guiding Plan (Nos. 201602189, 20180510006) and Dalian Science and Technology Star Project (No. 2017RQ149).


  1. 1.
    Radel RF, Kulcinski GL (2007) Implantation of He+ in candidate fusion first wall materials. J Nucl Mater 367–370:434–439CrossRefGoogle Scholar
  2. 2.
    Belgin EE, Aycik GA (2015) Preparation and radiation attenuation performances of metal oxide filled polyethylene based composites for ionizing electromagnetic radiation shielding applications. J Radioanal Nucl Chem 306:107–117CrossRefGoogle Scholar
  3. 3.
    Soylu HM, Lambrecht FY, Ersoz OA (2015) Gamma radiation shielding efficiency of a new lead-free composite material. J Radioanal Nucl Chem 305:529–534CrossRefGoogle Scholar
  4. 4.
    Fu EG, Wang YQ, Nastasi M (2012) Mechanisms for ion-irradiation-induced relaxation of stress in mosaic structured Cu thin films. J Phys D Appl Phys 45:495303CrossRefGoogle Scholar
  5. 5.
    Ou X, Anwand W, Kögler R, Zhou HB, Richter A (2014) The role of helium implantation induced vacancy defect on hardening of tungsten. J Appl Phys 115:123521CrossRefGoogle Scholar
  6. 6.
    Kajita S, Yoshida T, Kitaoka D, Etoh R, Yajima M, Ohno N, Yoshida H, Yoshida N, Terao Y (2013) Helium plasma implantation on metals: nanostructure formation and visible-light photocatalytic response. J Appl Phys 113:134301CrossRefGoogle Scholar
  7. 7.
    Mittal G, Lahiri I (2014) Recent progress in nanostructured next-generation field emission devices. J Phys D Appl Phys 47:323001CrossRefGoogle Scholar
  8. 8.
    Baldwin MJ, Doerner RP (2010) Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades. J Nucl Mater 404:165–173CrossRefGoogle Scholar
  9. 9.
    Miyamoto M, Nishijima D, Baldwin MJ, Doerner RP, Ueda Y, Yasunaga K, Yoshida N, Ono K (2011) Microscopic damage of tungsten exposed to deuterium-helium mixture plasma in PISCES and its impacts on retention property. J Nucl Mater 415:S657–S660CrossRefGoogle Scholar
  10. 10.
    Zenobia SJ, Garrison LM, Gerald L (2012) The response of polycrystalline tungsten to 30 keV helium ion implantation at normal incidence and high temperatures. J Nucl Mater 425:83–92CrossRefGoogle Scholar
  11. 11.
    Bernard E, Sakamoto R, Yoshida N, Yamada H (2015) Temperature impact on W surface exposed to He plasma in LHD and its consequences for the material properties. J Nucl Mater 463:316–319CrossRefGoogle Scholar
  12. 12.
    Tanyeli I, Marot L, Mathys D, van de Sanden MCM, Temmerman GD (2015) Surface modifications induced by high fluxes of low energy helium ions. Sci Rep 5:9779CrossRefGoogle Scholar
  13. 13.
    Sandoval L, Perez D, Uberuaga BP, Voter AF (2015) Competing kinetics and He bubble morphology in W. Phys Rev Lett 114:105502CrossRefGoogle Scholar
  14. 14.
    Yang Q, You YW, Liu L, Fan HY, Ni WY, Liu SC, Benstetter G, Wang YN (2015) Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation. Sci Rep 5:10959CrossRefGoogle Scholar
  15. 15.
    Ran G, Wu SH, Liu X, Wu JH, Li N, Zu XT, Wang LM (2012) The effect of crystal orientation on the behavior of a polycrystalline tungsten surface under focused Ga+ ion bombardment. Nucl Instrum Methods Phys Res Sect B 289:39–42CrossRefGoogle Scholar
  16. 16.
    Nordlund K, Bjӧrkas C, Ahlgren T, Lasa A, Sand AE (2014) Multiscale modelling of plasma-wall interactions in fusion reactor conditions. J Phys D Appl Phys 47:224018CrossRefGoogle Scholar
  17. 17.
    Fan HY, Wu ZJ, Sun T, Yang M, Guo JY, Yang KH, Li Y (2016) Efficient plasma-assisted approach in nanostructure fabrication of tungsten. Mater Des 89:78–84CrossRefGoogle Scholar
  18. 18.
    Miyamoto M, Takaoka H, Ono K, Morito S, Yoshida N, Watanabe H, Sagara A (2014) Crystal orientation dependence of surface modification in molybdenum mirror irradiated with helium ions. J Nucl Mater 455(2014):297–300CrossRefGoogle Scholar
  19. 19.
    Pentecoste L, Brault P, Thomann AL, Desgardin P, Lecas T, Belhabib T, Barthe MF, Sauvage T (2016) Low energy and low fluence helium implantations in tungsten: molecular dynamics simulations and experiments. J Nucl Mater 470:44–54CrossRefGoogle Scholar
  20. 20.
    Temmerman DG, Bystrov K, Doerner RP, Marot L, Wright GM, Woller KB, Whyte DG, Zielinski J (2013) Helium effects on tungsten under fusion-relevant plasma loading conditions. J Nucl Mater 438:S78–S83CrossRefGoogle Scholar
  21. 21.
    Sefta F, Juslin N, Hammond KD, Wirth BD (2013) Molecular dynamics simulations on the effect of sub-surface helium bubbles on the sputtering yield of tungsten. J Nucl Mater 438:S493–S496CrossRefGoogle Scholar
  22. 22.
    Ferroni F, Hammondb KD, Wirth BD (2015) Sputtering yields of pure and helium-implanted tungsten under fusion-relevant conditions calculated using molecular dynamics. J Nucl Mater 458:419–424CrossRefGoogle Scholar
  23. 23.
    Bradley RM, Harper JME (1988) Theory of ripple topography induced by ion-bombardment. J Vac Sci Technol A 6:2390–2395CrossRefGoogle Scholar
  24. 24.
    Sigmund P (1969) Theory of sputtering yield of amorphous and polycrystalline targets. Phys Rev 184:83–416CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Physics and Materials EngineeringDalian Minzu UniversityDalianPeople’s Republic of China
  2. 2.School of Aeronautics and AstronauticsDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations