Advertisement

Diffusion and sorption of Cs+ and Sr2+ ions onto synthetic mullite powder

  • H. A. IbrahimEmail author
  • H. S. Hassan
  • H. S. Mekhamer
  • S. H. Kenawy
Article
  • 30 Downloads

Abstract

Mullite powder was chemically synthesized by the sol–gel method and analyzed using SEM and X-ray diffraction. Sorptive removal of cesium and strontium ions from an aqueous solution using the synthetic mullite powder was investigated using the batch technique. Factors expected to influence the sorption process were experimentally examined. Sorption rate and diffusion parameters were determined by the tested models, while isotherm models were employed for analyzing sorption equilibrium data. The investigated diffusion and sorption behavior of synthetic mullite toward cesium and strontium ions promotes its potential use as backfill material incorporated in the engineering barrier of radioactive disposal facilities.

Keywords

Sorption Kinetic Cesium Strontium Mullite 

Supplementary material

10967_2018_6322_MOESM1_ESM.docx (235 kb)
Supplementary material 1 (DOCX 235 kb)

References

  1. 1.
    Technical Reports Series No. 402. (2001) Handling and processing of radioactive waste from nuclear applications. International Atomic Energy Agency (IAEA), ViennaGoogle Scholar
  2. 2.
    Abdel-Rahman RO, Ibrahim HA, Hung YT (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565CrossRefGoogle Scholar
  3. 3.
    Korichi S, Keddam M, Bensmail A (2014) Effects of compression on porous texture of clay powder: application to uranium diffusion. Chem Eng Res Des 92(7):1267–1278CrossRefGoogle Scholar
  4. 4.
    Dulama M, Pavelescu N, Pasare L (2009) combined radioactive liquid waste treatment processes involving inorganic sorbents and micro/ultrafiltration. Rom J Phys 54:851–859Google Scholar
  5. 5.
    Zakaria ES, Ali IM, El-Nagger IM (2002) Thermodynamic and ion exchange equilibria of Gd3+, Eu3+ amd Ce3+ ions on H+ form of titanium(IV) antimonite. Colloid Surf A210:33–40CrossRefGoogle Scholar
  6. 6.
    Ilic S, Zec S, Miljkovic M, Poleti D, Pošarac-Markovic M, Janckovic DJ, Matrovic B (2014) Sol- gel synthesis and characterization of iron doped mullite. J Alloys Compd 612:259–264CrossRefGoogle Scholar
  7. 7.
    Tokonami M, Nakajima Y, Morimoto N (1980) The diffraction aspect and a structural model of mullite, Al(Al1 + 2xSil − 2x)O5 − x. Acta Cryst A36:270–276CrossRefGoogle Scholar
  8. 8.
    Shackelford James F, Doremus Robert H (2008) Ceramic and glass materials, structure, properties and processing. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Ren L, Fu Z, Wang Y, Zhang F, Zhang J, Wang W, Wang H (2015) Fabrication of transparent mullite ceramic by spark plasma sintering from powders synthesized via sol–gel process combined with pulse current heating. Mater Des 83:753–759CrossRefGoogle Scholar
  10. 10.
    Amutharani D, Gnanam FD (1999) Low temperature pressureless sintering of sol–gel derived mullite. Mater Sci Eng A 264:254–261CrossRefGoogle Scholar
  11. 11.
    Initial investigations of the adsorption of phosphate on kyanite: a possible basis for a geotechnology to manage non-point source pollution. https://gsa.confex.com/gsa/2015NC/webprogram/Paper255476.html. Last visit at 27 Sept 2018
  12. 12.
    Güzel Y, Hussain S, Rainer M, Bonn GK (2014) Hihly selective enrichment of phosphopeptides using aluminum silicate Anal. Methods 6:9160Google Scholar
  13. 13.
    Suriyanarayanan N, Nithin KVK, Bernardo E (2009) mullite glass ceramics production from coal ash and alumina by high temperature plasma. J Non-Oxide Glasses 4:247–260Google Scholar
  14. 14.
    Omegna A, van Bokhoven JA, Prins R (2003) Flexible aluminium coordination in alumino-silicate. Structure of zeolite H-USY and amorphous silica-alumnia. J Phys Chem B 107:8854–8860CrossRefGoogle Scholar
  15. 15.
    Metwally SS, Ayoub RR (2016) Modification of natural bentonite using a chelating agent for sorption of 60Co radionuclide from aqueous solution. Appl Clay Sci 127:33–40CrossRefGoogle Scholar
  16. 16.
    Hamed MM, Aly MI, Nayl AA (2016) Kinetics and thermodynamics studies of cobalt, strontium and caesium sorption on marble from aqueous solution. Chem Ecol 32:68–87CrossRefGoogle Scholar
  17. 17.
    Erten HN, Aksoyoglu S, Hatipoglu S, Gokturk H (1988) Sorption of cesium and strontium on montmorillonite and kaolinite. Radiochim Acta 44(45):147–151Google Scholar
  18. 18.
    Petrova M, Petrushka I (2008) Sorption removal of Cs and Sr from radioactive wastewater by modified bentonite clay. http://www2.lwr.kth.se/forskningsprojekt/Polishproject/rep15/Petrova.pdf. Accessed 1 Nov 2018
  19. 19.
    Zhang A, Wang Y, Li J (2017) Cesium and strontium uptake utilizing a new ternary solid-state supramolecular adsorbent under a frame work of group partitioning. J Chem Eng Data 62(4):1440–1447CrossRefGoogle Scholar
  20. 20.
    Ho YS (2006) Review of second- order models for adsorption system. J Hazard Mater 36(3):681–689CrossRefGoogle Scholar
  21. 21.
    Ho YS, Mckay G (1998) The kinetics of sorption of basic dyes fi-om aqueous solution by sphagnum moss peat. Can J Chem Eng 76:822–827CrossRefGoogle Scholar
  22. 22.
    Wu F-C, Tseng R-L, Juang R-S (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 150:366–373CrossRefGoogle Scholar
  23. 23.
    Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J Am Chem Soc 69(11):2836–2848CrossRefGoogle Scholar
  24. 24.
    Reichenberg D (1953) Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J Am Chem Soc 75(3):589–597CrossRefGoogle Scholar
  25. 25.
    Mohan D, Singh KP (2002) Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res 36:2304–2318CrossRefGoogle Scholar
  26. 26.
    Zhdanov VP (1991) Arrhenius parameters for rate processes on solid surfaces. Surf Sci Rep 12(5):185–242CrossRefGoogle Scholar
  27. 27.
    El-Kamash AM, Zaki AA, Abdel-Geleel M (2006) Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. J Hazard Mater 127(1–3):211–220Google Scholar
  28. 28.
    Malek A, Farooq S (1996) Comparison of isotherm models for hydrocarbon adsorption on activated carbon. AIChE J 42(11):3191–3201CrossRefGoogle Scholar
  29. 29.
    Krishnan KA, Anirudhan TS (2003) Removal of cadmium(II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: kinetics and equilibrium studies. Water SA 29(2):147–156CrossRefGoogle Scholar
  30. 30.
    Mohan D, Chander S (2006) Single, binary, and multicomponent sorption of iron and manganese on lignite. J Colloid Interface Sci 299(1):76–87CrossRefGoogle Scholar
  31. 31.
    Sheindorf C, Rehbun M, Sheintuch M (1981) Freundlich-type multicomponent isotherm. J Colloid Interface Sci 79:136–145CrossRefGoogle Scholar
  32. 32.
    Alonso-Davila P, Torres-Rivera OL, Leyva-Ramos R, Ocampo-Perez R (2012) Removal of pyridine from aqueous solution by adsorption on an activated carbon cloth. Clean Soil Air Water 40(1):45–53CrossRefGoogle Scholar
  33. 33.
    Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337Google Scholar
  34. 34.
    Ngah WSW, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J Environ Manag 91(4):958–969CrossRefGoogle Scholar
  35. 35.
    Helfferich F (1962) Ion exchange. Mc Graw Hill Book Co, New YorkGoogle Scholar
  36. 36.
    Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2009) Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J Hazard Mater 170:969–977CrossRefGoogle Scholar
  37. 37.
    El-Kamash AM (2008) Evaluation of Zeolite A for the sorptive removal of Cs+ and Sr2+ Ions from aqueous solutions using batch and fixed bed column operations. J. Haz. Mat. 151:432–445CrossRefGoogle Scholar
  38. 38.
    Zhang A, Wang Y, Li J (2017) Cesium and strontium uptake utilizing a new ternary solid-state supramolecular adsorbent under a framework of group partitioning. J Chem Eng Data 62(4):1440–1447CrossRefGoogle Scholar
  39. 39.
    Petrushka Ihor, Moroz Olexandr (2016) Decontamination of radioactive liquid systems by modified clay minerals. Environ Problems 1(1):45–50Google Scholar
  40. 40.
    Park Younjin, Shin Won Sik, Cho Sang-June (2012) Removal of Co, Sr and Cs from aqueous solution using self-assembled monolayers on mesoporous supports. Kor J Chem Eng 29(11):1556–1566CrossRefGoogle Scholar
  41. 41.
    Erp TSV, Trinh T, Kjelstrup S, Glavatskiy KS (2014) On the relation between the Langmuir and thermodynamic flux equations. Front Phys 1:1–14Google Scholar
  42. 42.
    Santamaría-Holek I, Grzywna ZJ, Rubi JM (2012) A non-equilibrium thermodynamics model for combined adsorption and diffusion processes in micro- and nanopores. arXiv:1204.38441v1[Cond-mat-mtrl-sci]
  43. 43.
    Muurinen A (1993) Clay: controlling the environment. In: Proceedings of the 10th international caly conference on Adelaide, Australia, 1993, CSIRO Publishing, Melbourne, AustraliaGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Hot Laboratory CenterAtomic Energy AuthorityCairoEgypt
  2. 2.Refractories, Ceramics and Building Materials DepartmentNational Research Center (NRC)Dokki, CairoEgypt

Personalised recommendations