Advertisement

2,6-Bis(1-alkyl-1H-1,2,3-triazol-4-yl)-pyridines: selective lipophilic chelating ligands for minor actinides

  • Annalisa Ossola
  • Elena Macerata
  • Eros Mossini
  • Marco Giola
  • Maria Chiara Gullo
  • Arturo Arduini
  • Alessandro Casnati
  • Mario Mariani
Article
  • 6 Downloads

Abstract

Starting from the promising minor actinides (MA) affinity showed by the water-soluble ligands (PyTri-polyols) with the 2,6-bis[1H-1,2,3-triazol-4-yl]-pyridine chelating unit, different attempts were made to functionalize the same N3-donor set with alkyl chains in the 1-position of triazole nuclei to obtain novel lipophilic extractants endowed with comparable MA selectivity. Solubility in organic diluents was found to be the main limitation to the development of efficient lipophilic ligands, thus resulting in less efficient extractants with respect to their hydrophilic analogues and sometimes impairing the selectivity evaluation. Interestingly, the ethyl hexyl derivative (PTEH) showed adequate extraction capability and a MA selectivity comparable to that of the hydrophilic PyTri family.

Keywords

Partitioning Selective MA extraction Nitrogen ligand PyTri ligand Click chemistry Radioactive waste treatment 

Notes

Acknowledgements

This work was supported by EU-FP7 ACSEPT (Grant No. 211267), SACSESS (Grant No. 323282), EU-H2020 GENIORS (Grant No. 755171) projects and by the Italian Ministry of Education, University and Research. Thanks are also due to Centro Interdipartimentale Misure “G. Casnati” of Parma University for NMR and mass measurements.

Supplementary material

10967_2018_6253_MOESM1_ESM.docx (538 kb)
The 1H and 13C NMR spectra of the synthetized ligands, as well as the extraction data, are reported in the Supplementary Information (DOC 538 kb)

References

  1. 1.
    IAEA (2010) Nuclear energy development in the 21st century: global scenarios and regional trends. IAEA Nuclear Energy Series, ViennaGoogle Scholar
  2. 2.
    Poinssot Ch (2014) Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles. Energy 69:199–211CrossRefGoogle Scholar
  3. 3.
    Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39:426–443CrossRefGoogle Scholar
  4. 4.
    Silverio LB, Lamas WDQ (2011) An analysis of development and research on spent nuclear fuel reprocessing. Energy Policy 39:281–289CrossRefGoogle Scholar
  5. 5.
    Gonzalez-Romero EM (2011) Impact of partitioning and transmutation on the high level waste management. Nucl Eng Des 241:3436–3444CrossRefGoogle Scholar
  6. 6.
    Veliscek-Carolan J (2016) Separation of actinides from spent nuclear fuel: a review. J Hazard Mater 318:266–281CrossRefGoogle Scholar
  7. 7.
    Bourg S, Hill C, Caravaca C, Rhodes C, Ekberg C, Taylor R, Geist A, Modolo G, Cassayre L, Malmbeck R, Harrison M, de Angelis G, Espartero A, Bouvet S, Ouvrier N (2011) ACSEPT—partitioning technologies and actinide science: towards pilot facilities in Europe. Nucl Eng Des 241:3427–3435CrossRefGoogle Scholar
  8. 8.
    Modolo G, Wilden A, Geist A, Magnusson D, Malmbeck R (2012) A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate. Radiochim Acta 100:715–725CrossRefGoogle Scholar
  9. 9.
    Lewis FW (2015) Hydrophilic sulfonated bis-1,2,4-triazine ligands are highly effective reagents for separating actinides(III) from lanthanides(III) via selective formation of aqueous actinide complexes. Chem Sci 6:4812–4821CrossRefGoogle Scholar
  10. 10.
    Edwards AC (2016) Exploring electronic effects on the partitioning of actinides(III) from lanthanides(III) using functionalised bis-triazinyl phenanthroline ligands. Dalton Trans 45:18102–18112CrossRefGoogle Scholar
  11. 11.
    Hudson MJ (2013) Use of soft heterocyclic N-donor ligands to separate actinides and lanthanides. Inorg Chem 52:3414–3428CrossRefGoogle Scholar
  12. 12.
    Leoncini A, Huskens J, Verboom W (2017) Ligands for f-element extraction used in the nuclear fuel cycle. Chem Soc Rev 46:7229–7273CrossRefGoogle Scholar
  13. 13.
    Macerata E, Mossini E, Scaravaggi S, Mariani M, Mele A, Panzeri W, Boubals N, Berthon L, Charbonnel M-C, Sansone F, Arduini A, Casnati A (2016) Hydrophilic clicked 2,6-bis-triazolyl-pyridines endowed with high actinide selectivity and radiochemical stability: toward a closed nuclear fuel cycle. J Am Chem Soc 138:7232–7235CrossRefGoogle Scholar
  14. 14.
    Wagner C, Mossini E, Macerata E, Mariani M, Arduini A, Casnati A, Geist A, Panak PJ (2017) Time-resolved laser fluorescence spectroscopy study of the coordination chemistry of a hydrophilic CHON [1,2,3-triazol-4-yl]pyridine ligand with Cm(III) and Eu(III). Inorg Chem 56:2135–2144CrossRefGoogle Scholar
  15. 15.
    Mossini E, Macerata E, Wilden A, Kaufholz P, Modolo G, Iotti N, Casnati A, Geist A, Mariani M (2018) Optimization and single-stage centrifugal contactor experiments with the novel hydrophilic complexant PyTri-diol for the i-SANEX process. Solvent Extr Ion Exch 36:373–386.  https://doi.org/10.1080/07366299.2018.1507134 CrossRefGoogle Scholar
  16. 16.
    Magnusson D, Christiansen B, Foreman MRS, Geist A, Glatz J-P, Malmbeck R, Modolo G, Serrano-Purroy D, Sorel C (2009) Demonstration of a SANEX process in centrifugal contactors using the CyMe4-BTBP molecule on a genuine fuel solution. Solvent Extr Ion Exch 27:97–106CrossRefGoogle Scholar
  17. 17.
    Schmidt H, Wilden A, Modolo G, Švehla J, Grüner B, Ekberg C (2015) Gamma radiolytic stability of CyMe4BTBP and the effect of nitric acid. Nukleonica 60:879–884CrossRefGoogle Scholar
  18. 18.
    Kiefer C, Wagner AT, Beele BB, Geist A, Panak PJ, Roesky PW (2015) A Complexation study of 2,6-bis(1-(p-tolyl)-1H-1,2,3-triazol-4-yl)pyridine using single-crystal X-ray diffraction and TRLFS. Inorg Chem 54:7301–7308CrossRefGoogle Scholar
  19. 19.
    Mondal T, Basak D, Ouahabi AA, Schmutz M, Mésini P, Ghosh S (2015) Supporting information for Extended supramolecular organization of π-systems using yet unexplored simultaneous intra- and inter-molecular H-bonding motifs of 1,3-dihydroxy derivatives. Chem Commun 51:5040–5043CrossRefGoogle Scholar
  20. 20.
    Orita A, Nakano T, An DL, Tanikawa K, Wakamatsu K, Otera J (2004) Metal-assisted assembly of pyridine-containing arylene ethynylene strands to enantiopure double helicates. J Am Chem Soc 126:10389–10396CrossRefGoogle Scholar
  21. 21.
    Ostermeier M, Berlin MA, Meudtner RM, Demeshko S, Meyer F, Limberg C, Hecht S (2010) Complexes of click-derived bistriazolylpyridines: remarkable electronic influence of remote substituents on thermodynamic stability as well as electronic and magnetic properties. Chem Eur J 16:10202–10213CrossRefGoogle Scholar
  22. 22.
    Ulrich S, Petitjean A, Lehn J-M (2010) Metallo-controlled dynamic molecular tweezers: design, synthesis, and self-assembly by metal-ion coordination. Eur J Inorg Chem 2010:1913–1928CrossRefGoogle Scholar
  23. 23.
    Baek S-Y, Kim Y-W, Yoo S-H, Chung K, Kim N-K, Kim J-S (2012) Synthesis and rust preventing properties of dodecyl succinate derivatives containing triazole groups. Ind Eng Chem Res 51:9669–9678CrossRefGoogle Scholar
  24. 24.
    Travelli C, Aprile S, Rahimian R, Grolla AA, Rogati F, Bertolotti M, Malagnino F, Di Paola R, Impellizzeri D, Fusco R, Mercalli V, Massarotti A, Stortini G, Terrazzino S, Del Grosso E, Fakhfouri G, Troiani MP, Alisi MA, Grosa G, Sorba G, Canonico PL, Orsomando G, Cuzzocrea S, Genazzani AA, Galli U, Tron GC (2017) Identification of novel triazole-based nicotinamide phosphoribosyltransferase (NAMPT) inhibitors endowed with antiproliferative and antiinflammatory activity. J Med Chem 60:1768–1792CrossRefGoogle Scholar
  25. 25.
    Ishihara T, Ohwada K (1966) Chemical degradation of kerosene diluent with nitric acid. J Nucl Sci Technol 3:20–26CrossRefGoogle Scholar
  26. 26.
    Nilsson M, Andersson S, Drouet F, Ekberg C, Foreman M, Hudson M, Liljenzin J-O, Magnusson D, Skarnemark G (2006) Extraction properties of 6,6′-bis-(5,6-dipentyl-[1, 2, 4]triazin-3-yl)-[2,2′]bipyridinyl (C5-BTBP). Solvent Extr Ion Exch 24:299–318CrossRefGoogle Scholar
  27. 27.
    Retegan TV, Ekberg C, Fermvik A, Skarnemark G (2006) The effect of diluents on extraction of actinides and lanthanides. In: MRS proceedings 985, 0985-NN14-05.  https://doi.org/10.1557/proc-985-0985-nn14-05
  28. 28.
    Chapron S, Marie C, Arrachart G, Miguirditchian M, Pellet-Rostaing S (2015) New insight into the americium/curium separation by solvent extraction using diglycolamides. Solvent Extr Ion Exch 33:236–248CrossRefGoogle Scholar
  29. 29.
    Modolo G, Kluxen P, Geist A (2010) Demonstration of the LUCA process for the separation of americium(III) from curium(III), californium(III), and lanthanides(III) in acidic solution using a synergistic mixture of bis(chlorophenyl)dithiophosphinic acid and tris(2-ethylhexyl)phosphate. Radiochim Acta 98:193–201CrossRefGoogle Scholar
  30. 30.
    Vanel V, Marie C, Kaufholz P, Montuir M, Boubals N, Wilden A, Modolo G, Geist A, Sorel C (2016) Modeling and flowsheet design of an Am separation process using TODGA and H4TPAEN. Procedia Chem 21:223–230CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of EnergyPolitecnico di MilanoMilanItaly
  2. 2.Department of Chemistry, Life Sciences and Environmental SustainabilityUniversità di ParmaParmaItaly

Personalised recommendations