Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 319, Issue 1, pp 471–484 | Cite as

Studies on heavy mineral placers from eastern coast of Odisha, India by instrumental neutron activation analysis

  • Rahat Khan
  • Shayantani Ghosal
  • Debashish SenguptaEmail author
  • Umma Tamim
  • Syed Mohammod Hossain
  • Sudha Agrahari
Article

Abstract

The study shows geochemical characterization of placer deposit in parts of coastal Odisha, India using Instrumental Neutron Activation Analysis (INAA). Twenty seven elements were estimated in ten heavy mineral beach sand samples. The characterisation was mostly based on the trace element, radioactive element and Rare Earth Element (REE) content of the bulk sand samples. The results indicate elevated concentration of thorium and the REE’s. The concentration of Scandium has been reported for the first time along this area. Positive correlation between thorium and REE was observed in beach placer samples collected from study area.

Keywords

Eastern Coast of India Rare Earth Elements Monazite Scandium Trace Elements Heavy Minerals 

Notes

Acknowledgements

The work has been funded by the Science and Engineering Research Board (SERB), DST, Govt. of India, under the Project Code: YSS/2015/000979. We acknowledge their financial assistance. We are also thankful to the technical personnel associated with this study, especially to the persons involved in the TRIGA Mark II research reactor operation at the Center for Research Reactor, AERE, Bangladesh Atomic Energy Commission, Bangladesh.

References

  1. 1.
    Soto-Jiménez M, Páez-Osuna F, Morales-Hernández F (2001) Selected trace metals oysters (Crassostrea iridescens) and sediments from the discharge zone of the submarine sewage outfall in Mazatlán by (southeast Gulf of California): chemical fractions and bioaccumulation factors. Environ Pollut 114:357–370CrossRefPubMedGoogle Scholar
  2. 2.
    Khan R, Yokozuka Y, Terai S, Shirai N, Ebihara M (2015) Accurate determination of Zn in geological and cosmochemical rock samples by isotope dilution inductively coupled plasma mass spectrometry. J Anal At Spectrom 30:506–514CrossRefGoogle Scholar
  3. 3.
    Khan R, Shirai N, Ebihara M (2015) Chemical characteristic of R chondrites in the light of P, REEs, Th and U abundances. Earth Planet Sci Lett 422:18–27CrossRefGoogle Scholar
  4. 4.
    Hang C, Hu B, Jiang Z, Zhang N (2007) Simultaneous on-line preconcentration and determination of trace metals in environmental samples using a modified nanometer-sized alumina packed micro-column by flow injection combined with ICP-OES. Talanta 71(3):1239–1245CrossRefPubMedGoogle Scholar
  5. 5.
    Tamim U, Khan R, Jolly YN, Fatema K, Das S, Naher K, Islam MA, Islam SMA, Hossain SM (2016) Elemental distribution of metals in urban river sediments near an industrial effluent source. Chemosphere 155:509–518CrossRefPubMedGoogle Scholar
  6. 6.
    Frontasyeva MV (2011) Neutron activation analysis in the life sciences. Phys Part Nucl 42:332–378.  https://doi.org/10.1134/S1063779611020043 CrossRefGoogle Scholar
  7. 7.
    Badawy WM, Ghanim EH, Duliu OG, El Samman H, Frontasyeva MV (2017) Major and trace element distribution in soil and sediments from the Egyptian central Nile Valley. J Afr Earth Sci 131:53–61.  https://doi.org/10.1016/j.jafrearsci.2017.03.029 CrossRefGoogle Scholar
  8. 8.
    Stosch HG (2016) Neutron activation analysis of the rare earth elements (REE): with emphasis on geological materials. Phys Sci Rev 1(8):24.  https://doi.org/10.1515/psr-2016-0062 CrossRefGoogle Scholar
  9. 9.
    European Commission (2010) Critical raw materials for the EU. Report of the Ad hoc working group on defining critical raw materials, 85 ppGoogle Scholar
  10. 10.
    European Commission (2014) Report on critical raw materials for the EU. Report of the Ad hoc working group on defining critical raw materials, 41 ppGoogle Scholar
  11. 11.
    Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, Kirchain RE (2012) Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol 46:3406–3414.  https://doi.org/10.1021/es203518d CrossRefPubMedGoogle Scholar
  12. 12.
    Rudnick RL, Gao S (2003) The composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Vol 3, The crust. Elsevier, Pergamon, pp 1–64.  https://doi.org/10.1016/b0-08-043751-6/03016-4 CrossRefGoogle Scholar
  13. 13.
    Mohanty AK, Sengupta D, Das SK, Vijayan V, Saha SK (2004) Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India. Radiat Meas 38(2):153–165.  https://doi.org/10.1016/j.radmeas.2003.08.003 CrossRefGoogle Scholar
  14. 14.
    Palaparthi J, Chakrabarti R, Banerjee S, Guin R, Ghosal S, Agrahari S, Sengupta D (2017) Economically viable rare earth element deposits along beach placers of Andhra Pradesh, eastern coast of India. Arab J Geosci 10:201CrossRefGoogle Scholar
  15. 15.
    Rao NS, Misra S (2009) Sources of monazite sand in southern Orissa beach placer, eastern India. J Geol Soc India 74(9):357–362Google Scholar
  16. 16.
    Ghosal S, Agrahari S, Guin R, Sengupta D (2017) Implications of modelled radioactivity measurements along coastal Odisha, Eastern India for heavy mineral resources. Estuar Coast Shelf Sci 184:83–89CrossRefGoogle Scholar
  17. 17.
    Bangaku Naidu K, Reddy KSN, Sekhar Ch Ravi, Ganapati Rao P, Murali Krishna KN (2016) REE geochemistry of monazites from coastal sands between Bhimunipatnam and Konada, Andhra Pradesh, East coast of India. Curr Sci 110(8):25Google Scholar
  18. 18.
    Förster H (1998) The chemical composition of REE–Y–Th–U-rich accessory minerals in peraluminous granites of the Erzgebirge–Fichtelgebirge region, Germany. Part II: xenotime. Am Mineral 83:1302–1315CrossRefGoogle Scholar
  19. 19.
    Behera P (2003) Heavy mineral in beach sands of gopalpur and paradeep along Odisha coast line, east coast of India. Indian J Mar Sci 32(2):172–174Google Scholar
  20. 20.
    Ravisankar R, Manikandan E, Dheenathayalu M, Rao B, Seshadreesan NP, Nair KGM (2006) Determination and distribution of rare earth elements in beach rock samples using Instrumental Neutron Activation Analysis (INAA). Nucl Instrum Methods Phys Res B 251:496–500CrossRefGoogle Scholar
  21. 21.
    Ravisankar R, Chandrasekaran A, Senthilkumar G, Govardhanan B, Anand DP (2013) Instrumental Neutron Activation Analysis (INAA) of beach rock samples of Andaman Island, India. Sci Acta Xaver 4(2):1–9Google Scholar
  22. 22.
    Mishra DG, Acharya R, Swain KK, Joshi RM, Joshi VM, Verma PC, Hegde AG, Reddy AVR (2012) Determination of thorium concentrations in soil and sand samples using instrumental neutron activation analysis. J Radioanal Nucl Chem 294:333–336CrossRefGoogle Scholar
  23. 23.
    Vasconcelos DC, Oliveira1 AH, Silva MRS, Penna R, Santos TO, Pereira C, Rocha Z, Menezes MÂBC (2009) Determination of uranium and thorium activity concentrations using activation analysis in beach sands from extreme South Bahia, Brazil. In: International nuclear Atlantic conference—INAC 2009 Rio de Janeiro, RJ, Brazil, Associação Brasileira De Energia Nuclear—ABEN (ISBN: 978-85-99141-03-8) Google Scholar
  24. 24.
    Reguigui N, Kucera J, Ben Kraiem H (2002) Determination of trace elements in Tunisian soil, desert and beach sand using instrumental neutron activation analysis. In: Proceedings of international symposium on environmental pollution control and waste management, pp 70–82Google Scholar
  25. 25.
    Sengupta D, Van Gosen BS (2016) Placer-type rare earth element deposits. Soc Econ Geol Rev Econ Geol 18:81–100Google Scholar
  26. 26.
    Ramakrishnan M, Nanda JK, Augustine PF (1998) Geological evolution of the proterozoic eastern ghats mobile belt. Geological Survey of India Special Publication 44Google Scholar
  27. 27.
    International Atomic Energy Agency (1995) Reference sheet SL-1 trace elements in lake sedimentsGoogle Scholar
  28. 28.
    Randa Z, Frána J, Mizera J, Kucera J, Novák JK, Ulrych J, Belov AG, Maslov OD (2007) Instrumental neutron and photon activation analysis in the geochemical study of phonolitic and trachytic rocks. Geostand Geoanal Res 31:275–283CrossRefGoogle Scholar
  29. 29.
    Garcia D, Fonteilles M, Moutte J (1994) Sedimentary fractionations between Al, Ti, and Zr, and the genesis of strongly peraluminous granites. J Geol 102:411–422CrossRefGoogle Scholar
  30. 30.
    Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32CrossRefGoogle Scholar
  31. 31.
    Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985CrossRefPubMedGoogle Scholar
  32. 32.
    El-Kammar AA, Ragab AA, Moustafa MI (2011) Geochemistry of economic heavy minerals from Rosetta black sand of Egypt. JAKU Earth Sci 22(2):69–97Google Scholar
  33. 33.
    Paul DK, Ray Barman T, McNaughton NJ, Fletcher IR, Potts PJ, Ramakrishnan M, Augustine PF (1990) Archean–proterozoic evolution of indian charnockites: isotopic and geochemical evidence from granulites of the eastern ghats belt. J Geol 98(2):253–263CrossRefGoogle Scholar
  34. 34.
    Kellam JA, Bonn GN, Laney MK (1992) Distribution of heavy mineral sands adjacent to the Altamaha sound: an exploration model. Department of Natural Resources, Environmental Protection Division, Georgia Geologic Survey Bulletin, Atlanta, p 110Google Scholar
  35. 35.
    Van Gosen BS, Verplanck PL, Long KR, Gambogi Joseph Seal RR II (2014) The rare-earth elements—vital to modern technologies and lifestyles. U.S. Geological Survey Fact Sheet 2014–3078, p 4. https://dx.doi.org/10.3133/fs20143078
  36. 36.
    Gupta S (2012) Strain localization, granulite formation and geodynamic setting of ‘hot orogens: a case study from the Eastern Ghats Province, India. Geol J 47:334–351CrossRefGoogle Scholar
  37. 37.
    Taylor SR, McLennan SM (1981) The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philos Trans R Soc 301(1461):381–399CrossRefGoogle Scholar
  38. 38.
    Eman S (2016) Determination of the elements concentration in Egyptian black sand using the neutron activation analysis technique. Curr Sci Int 5:307–313Google Scholar
  39. 39.
    Tsai CS, Yeh SJ (1997) Determination of rare earth elements in Taiwan monazite by chemical neutron activation analysis. J Radioanal Nucl Chem 216(2):241–245CrossRefGoogle Scholar
  40. 40.
    Ibrahim N (1994) Isotope identification of Langkawi black sand using neutron activation analysis. J Radioanal Nucl Chem 186(6):489–494CrossRefGoogle Scholar
  41. 41.
    Abdallah Ali M, Fayez-Hassan NA Mansour, Mubarak Fawzia, Ahmed Talaat Salah, Hassanin WF (2018) Elemental analysis and radionuclides monitoring of beach black sand at north of Nile delta, Egypt. Pure Appl Geophys 175:2269–2278.  https://doi.org/10.1007/s00024-017-1757-x CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Rahat Khan
    • 1
  • Shayantani Ghosal
    • 2
  • Debashish Sengupta
    • 2
    Email author
  • Umma Tamim
    • 1
  • Syed Mohammod Hossain
    • 1
    • 3
  • Sudha Agrahari
    • 2
  1. 1.Institute of Nuclear Science and TechnologyBangladesh Atomic Energy CommissionSavar, DhakaBangladesh
  2. 2.Department of Geology and GeophysicsIndian Institute of Technology KharagpurKharagpurIndia
  3. 3.Human Resources DivisionBangladesh Atomic Energy CommissionDhakaBangladesh

Personalised recommendations