Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 3, pp 1543–1558 | Cite as

Radio-green chemistry and nature resourced radiochemistry

  • Susanta LahiriEmail author
  • Dibyasree Choudhury
  • Kamalika Sen


The birth of green chemistry in 1990 influenced every branch of sciences including radiochemistry. The development of new radiochemical methods is now dictated by the green chemistry mandates, especially in terms of choosing solvents and reagents. Though there are numbers of environmentally benign reagents and solvents, but sometime atom economy is not fully maintained in the manufacturing process. A newer trend is to use chemicals from natural resources. This new trend in radiochemistry may be termed as “Nature Resourced Radiochemistry”. The development in last two decades in “Radio-green Chemistry” and “Nature Resourced Radiochemistry” has been briefly discussed in the review.


Green chemistry Biocompatible polymer Biopolymer Ionic liquid Nature resourced radiochemistry 



This work is a part of SINP-DAE 12 five year plan project TULIP.


  1. 1.
    Rösch F, Qaim SM, Stocklin G (1993) Production of the positron emitting radioisotope 86Y for nuclear medical application. Appl Radiat Isot 44:677Google Scholar
  2. 2.
    Rösch F, Novgoredov AF, Qaim SM (1994) Thermochromatographic separation of 94mTc from enriched molybdenum targets and its large scale production for nuclear medical application. Radiochim Acta 64:113Google Scholar
  3. 3.
    Qaim SM (2012) The present and future of medical radionuclide production. Radiochim Acta 100:635Google Scholar
  4. 4.
    Coenen HH, Elsinga PH, Iwata R, Kilbourn MR, Pillai MR, Rajan MG, Wagner HN, Zaknun JJ (2010) Fluorine-18 radiopharmaceuticals beyond [18F]FDG for use in oncology and neurosciences. Nucl Med Biol 37:727PubMedGoogle Scholar
  5. 5.
    Varagnolo L, Stokkel MPM, Mazzi U, Pauwels EKJ (2000) 18F-labeled radiopharmaceuticals for PET in oncology, excluding FDG. Nucl Med Biol 27:103PubMedGoogle Scholar
  6. 6.
    Lahiri S (2016) Across the energy scale: from eV to GeV. J Radioanal Nucl Chem 307:1571Google Scholar
  7. 7.
    Nagame Y, Haba H, Tsukada K, Asai M, Toyoshima A, Goto S, Akiyama K, Kaneko T, Sakama M, Hirata M, Yaita T, Nishinaka I, Ichikawa S, Naahara H (2004) Chemical studies of the heaviest elements. Nucl Phys A 734:124Google Scholar
  8. 8.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York, p 30Google Scholar
  9. 9.
    Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301PubMedGoogle Scholar
  10. 10.
    Albertsson PA (1956) Chromatography and partition of cells and cell fragments. Nature (London) 177:771Google Scholar
  11. 11.
    Albertsson PA (1986) Partitioning of cell particles and macromolecules, 3rd edn. Wiley, New YorkGoogle Scholar
  12. 12.
    Shahriari SC, Neves CMSS, Freire MG, Coutinho JAP (2012) Role of the hofmeister series in the formation of ionic-liquid-based aqueous biphasic systems. J Phys Chem B 116:7252PubMedGoogle Scholar
  13. 13.
    Huddleston JG, Veide A, Kohler K, Flanagan J, Enfors SO, Lyddiat A (1991) The molecular basis of partitioning in aqueous two-phase systems. Trends Biotechnol 9:381PubMedGoogle Scholar
  14. 14.
    Yang L, Fan Y, Gao YQ (2011) Differences of cations and anions: their hydration, surface adsorption, and impact on water dynamics. J Phys Chem B 115:12456PubMedGoogle Scholar
  15. 15.
    Freire MG, Claudio AFM, Araujo JMM, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41:4966PubMedGoogle Scholar
  16. 16.
    Shibukawa M, Nakayama N, Hayashi T, Shibuya D, Endo Y, Kawamura S (2001) Extraction behaviour of metal ions in aqueous PEG-sodium sulphate 2 phase systems in the presence of iodide and thiocyanate ions. Anal Chim Acta 427:293Google Scholar
  17. 17.
    Roy K, Lahiri S (2008) Production and separation of astatine radionuclides: some new addition to astatine chemistry. Appl Radiat Isot 66:571PubMedGoogle Scholar
  18. 18.
    Bénard F, Zeisler SK, Vuckovic M, Lin KS, Zhang Z, Colpo N, Hou X, Ruth TJ, Schaffer P (2014) Cross-linked polyethylene glycol beads to separate 99mTc-pertechnetate from low-specific-activity molybdenum. J Nucl Med 55:1910PubMedGoogle Scholar
  19. 19.
    Andersson JD, Wilson JS, Romaniuk JA, McEwan AJB, Abrams DN, McQuarrie SA, Gagnon K (2016) Separation of [99mTc] pertechnetate and molybdate using polyethylene glycol coated C18 and C30 resins. Appl Radiat Isot 110:193PubMedGoogle Scholar
  20. 20.
    Berthod A, Ruiz-Angel MJ, Carda-Broch S (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6PubMedGoogle Scholar
  21. 21.
    Pandey S (2006) Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556:38PubMedGoogle Scholar
  22. 22.
    Passos H, Luís A, Coutinho JAP, Freire MG (2016) Thermoreversible (Ionic-liquid-based) aqueous biphasic systems. Scientific Reports 6:20276PubMedPubMedCentralGoogle Scholar
  23. 23.
    Huddleston JG, Rogers RD (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun 0:1765Google Scholar
  24. 24.
    Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbery JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125:6632PubMedGoogle Scholar
  25. 25.
    Ghosh K, Maiti M, Lahiri S, Hussain VA (2014) Ionic liquid-salt based aqueous biphasic system for separation of 109Cd from silver target. J Radioanal Nucl Chem 302:925Google Scholar
  26. 26.
    Vasudeva Rao PR, Venkatesan KA, Rout A, Srinivasan TG, Nagarajan K (2012) Potential applications of room temperature ionic liquids for fission products and actinide separation. Sep Sci Technol 47:20Google Scholar
  27. 27.
    Mandal S, Lahiri S (2013) Cloud point extraction of 99Mo with Triton X-114. J Radioanal Nucl Chem 295:1361Google Scholar
  28. 28.
    Maiti M, Datta A, Lahiri S (2015) Aqueous biphasic separation of 97Ru and 95,96Tc from yttrium. RSC Adv 5:80919Google Scholar
  29. 29.
    Datta A, Maiti M, Lahiri S (2014) Separation of 97Ru from niobium target using PEG based aqueous biphasic systems. J Radional Nucl Chem 302:931Google Scholar
  30. 30.
    Dutta B, Lahiri S, Tomar BS (2014) Separation of no-carrier-added rhenium from bulk tantalum by the sodium malonate–PEG aqueous biphasic system. Appl Radiat Isot 84:8PubMedGoogle Scholar
  31. 31.
    Dutta B, Lahiri S, Tomar BS (2013) Application of PEG based aqueous biphasic systems in extraction and separation of no-carrier-added 183Re from bulk tantalum. Radiochim Acta 101:19Google Scholar
  32. 32.
    Roy K, Lahiri S (2009) Extraction of Hg(I), Hg(II) and methylmercury using polyethylene glycol based aqueous biphasic system. Appl Radiat Isot 67:178Google Scholar
  33. 33.
    Roy K, Paul R, Banerjee B, Lahiri S (2009) Extraction of long-lived radionuclides 152,154Eu and 134Cs using environmentally benign aqueous biphasic system. Radiochim Acta 97:637Google Scholar
  34. 34.
    Roy K, Lahiri S (2008) Species dependent radiotracer study of Cr(VI) and Cr(III) using an aqueous biphasic system. Radiochim Acta 96:49Google Scholar
  35. 35.
    Rogers RD, Bond AH, Zhang J, Bauer CB (1996) Polyethylene glycol based-aqueous biphasic systems as technetium-99 m generators. Appl Radiat lsot 47:497Google Scholar
  36. 36.
    Rogers RD, Bond AH, Zhang J, Philip HE (1997) New technetium-99m generator technologies utilizing polyethylene glycol based aqueous biphasic systems. Sep Sci Technol 32:867Google Scholar
  37. 37.
    Rogers RD, Zhang J, Bond AH, Bauer CB, Jezl ML, Roden DM (1995) Selective and quantitative partitioning of pertechnate in polyethylene glycol based aqueous biphasic systems. Sol Extr Ion Exch 13:665Google Scholar
  38. 38.
    Ghosh K, Maiti M, Lahiri S (2017) Separation of 195(m, g),197mHg from bulk gold target by liquid-liquid extraction using hydrophobic ionic liquids. Radiochim Acta 105:747Google Scholar
  39. 39.
    Chotkowski M, Połomski D (2017) Extraction of pertechnetates from HNO3 solutions into ionic liquids. J Radioanal Nucl Chem 314:87PubMedPubMedCentralGoogle Scholar
  40. 40.
    Gupta NK, Sengupta A, Biswas S (2017) Quaternary ammonium based task specific ionic liquid for the efficient and selective extraction of neptunium. Radiochim Acta 105:689Google Scholar
  41. 41.
    Ghosh K, Lahiri S, Sarkar K, Naskar N, Choudhury D (2016) Ionic liquid-salt based aqueous biphasic system for rapid separation of no-carrier-added 203Pb from proton irradiated natTl2CO3 target. J Radioanal Nucl Chem 310:1311Google Scholar
  42. 42.
    Ghosh K, Lahiri S, Maiti M (2016) Separation of no-carrier-added 195(m, g), 197 mHg from Au target by ionic liquid and salt based aqueous biphasic systems. J Radioanal Nucl Chem 310:1345Google Scholar
  43. 43.
    Ghosh K, Maiti M, Lahiri S (2013) Separation of no-carrier-added 109Cd from natural silver target using RTIL 1-butyl-3-methylimidazolium hexafluorophosphate. J Radioanal Nucl Chem 298:1049Google Scholar
  44. 44.
    Cao B, Liu S, Du D, Xue Z, Fu H, Sun H (2016) Experiment and DFT studies on radioiodine removal and storage mechanism by imidazolium-based ionic liquid. J Mol Graph Model 64:51PubMedGoogle Scholar
  45. 45.
    Sen K, Wolterbeek HT (2012) Role of an ionic liquid, 1-butyl-3-methylimidazolium 2-(2-methoxyethoxy)ethyl sulfate in extraction studies of gadolinium oxide. Radiochim Acta 100:263Google Scholar
  46. 46.
    Rout A, Venkatesan KA, Srinivasan TG, Vasudevao Rao PR (2012) Ionic liquid extractants in molecular diluents: Extraction behavior of europium (III) in quarternary ammonium-based ionic liquids. Sep Purif Technol 95:26Google Scholar
  47. 47.
    Drobnic J, Rypacek F (1984) Soluble synthetic polymers in biological systems. Polymer in medicine: advances in polymer science. Springer, Berlin, p 24Google Scholar
  48. 48.
    Liu M, Yan X, Liu H, Yu W (2000) An investigation of the interaction between polyvinylpyrrolidone and metal cations. React Funct Polym 44:55Google Scholar
  49. 49.
    Bekturov EA, Kudaibergenov SE, Kanapyanova GS, Kurmanbaeva AA (1984) Complexation of poly (N-vinylpyrrolidone) and N-vinyl-pyrrolidone copolymers with cupric (II) ions in aqueous solution. Polym Commun 25:220Google Scholar
  50. 50.
    Nayak D, Banerjee A, Ghosh K, Das A, Lahiri S (2009) Determination of dynamic dissociation constant of chromium-poly (N-vinylpyrrolidone) complex by the radiotracer technique. Indian J Chem 48A:672Google Scholar
  51. 51.
    Lahiri S, Sarkar S (2007) Separation of iron and cobalt using 59Fe and 60Co by dialysis of polyvinylpyrrolidone–metal complexes: a greener approach. Appl Radiat Isot 65:387PubMedGoogle Scholar
  52. 52.
    Sarkar S, Nayak D, Lahiri S (2007) Studies on the interaction of poly(N-vinylpyrrolidone) with no-carrier-added 61Cu, 62Zn, 66Ga, 69Ge and 71As using tracer packet technique. Radiochim Acta 95:467Google Scholar
  53. 53.
    Lahiri S, Sarkar S (2008) Separation of no-carrier-added Tl and Pb radionuclides using poly(N-vinylpyrrolidone). J Radioanal Nucl Chem 277:513Google Scholar
  54. 54.
    Lahiri S, Sarkar S (2007) Studies on 66,67Ga- and 199Tl-poly(N-vinylpyrrolidone) complexes. Appl Radiat Isot 65:309PubMedGoogle Scholar
  55. 55.
    Wierczinski B, Denkova AG, Peters JA, Wolterbeek HT (2006) Kinetic stability of metal complexes-Determination of Ka and Kd using radiotracers. Application of radiotracers in chemical, environmental and biological sciences. Saha Institute of Nuclear Physics, Kolkata, p 112Google Scholar
  56. 56.
    Lahiri S, Nayak D (2002) Tracer Packet: a new conception for the production of tracers of micronutrient elements. J Radioanal Nucl Chem 254:289Google Scholar
  57. 57.
    Mirshafiey A, Khodadadi A, Rehm BH, Khorramizadeh MR, Eslami MB, Razavi A, Saadat F (2005) Sodium alginate as a novel therapeutic option in experimental colitis. J Immun 61:316Google Scholar
  58. 58.
    Draget KI, Skjåk-Bræk G, Stokke BT (2006) Similarities and differences between alginic acid gels and ionically crosslinked alginate gels. Food Hydrocolloids 20:170Google Scholar
  59. 59.
    Braccini I, Pérez S (2001) Molecular Basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromol 2:1089Google Scholar
  60. 60.
    Fuks L, Oszczak A, Gniazdowska E, Sternik D (2015) Calcium alginate and chitosan as potential sorbents for strontium radionuclide. J Radioanal Nucl Chem 304:15Google Scholar
  61. 61.
    Fadl FIAE (2014) Radiation grafting of ionically crosslinked alginate/chitosan beads with acrylic acid for lead sorption. J Radioanal Nucl Chem 301:529Google Scholar
  62. 62.
    Sarkar K, Sen K, Lahiri S (2017) Separation of no-carrier-added 97Ru from 11B-induced Y target by encapsulation of 97Ru into calcium alginate hydrogel beads. J Radioanal Nucl Chem 314:969Google Scholar
  63. 63.
    Banerjee A, Nayak D, Lahiri S (2007) A new method of synthesis of iron doped calcium alginate beads and determination of iron content by radiometric method. J Biochem Eng 33:260Google Scholar
  64. 64.
    Sen K, Sarkar K, Lahiri S (2017) Production, separation and embedment of no-carrier added 93mMo in iron-doped calcium alginate beads from 7Li irradiated yttrium target. J Radioanal Nucl Chem 314:451Google Scholar
  65. 65.
    Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339PubMedGoogle Scholar
  66. 66.
    Singh A, Narvi SS, Dutta PK, Pandey ND (2006) External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde. Bull Mater Sci 29:233Google Scholar
  67. 67.
    Maity S, Datta A, Lahiri S, Ganguly J (2015) Selective separation of 152Eu from a mixture of 152Eu and 137Cs using a chitosan based hydrogel. RSC Adv 5:89338Google Scholar
  68. 68.
    Maity S, Lahiri S, Ganguly J (2016) A dynamic chitosan-based self-healing hydrogel with tunable morphology and its application as an isolating agent. RSC Adv 6:81060Google Scholar
  69. 69.
    Wang G, Kruijff RD, Stuart MCA, Mendes E, Wolterbeek HT, Denkova AG (2013) Polymersomes as radionuclide carriers loaded via active ion transport through the hydrophobic bilayer. Soft Matter 9:727Google Scholar
  70. 70.
    Wang G, Hoornweg A, Wolterbeek HT, Franken LE, Mendes E, Denkova AG (2015) Enhanced retention of encapsulated ions in cross-linked polymersomes. J Phys Chem B 119:4300PubMedGoogle Scholar
  71. 71.
    Sarkar K, Sen K, Lahiri S (2017) Radiometric analysis of isotherms and thermodynamic parameters for cadmium(II) adsorption from aqueous medium by calcium alginate beads. J Radioanal Nucl Chem 312:343Google Scholar
  72. 72.
    Sarkar K, Sen K, Lahiri S (2017) Separation of long-lived 152Eu radioisotopes from a binary mixture of 152Eu and 134Cs by calcium alginate: a green technique. J Radioanal Nucl Chem 311:2001Google Scholar
  73. 73.
    Sarkar K, Lahiri S, Sen K (2016) Separation of no-carrier-added 203Pb, a surrogate radioisotope, from proton irradiated natTl2CO3 target using calcium alginate hydrogel beads. Radiochim Acta 104:891Google Scholar
  74. 74.
    Mandal A, Lahiri S (2011) Separation of 134Cs and 133Ba radionuclides by calcium alginate beads. J Radioanal Nucl Chem 290:115Google Scholar
  75. 75.
    Nayak D, Lahiri S (2009) Immobilisation of no-carrier-added 93mMo on a biopolymer calcium alginate: a candidate radiopharmaceutical. J Radioanal Nucl Chem 281:181Google Scholar
  76. 76.
    Nayak D, Lahiri S (2006) Biosorption of toxic, heavy, no-carrier-added radionuclides by calcium alginate beads. J Radioanal Nucl Chem 267:59Google Scholar
  77. 77.
    Saha S, Basu H, Pimple MV, Singhal RK (2018) Alginate impregnated ferric hexacyanoferrate (II) for effective decontamination of cesium from aquatic environment. J Radioanal Nucl Chem. CrossRefGoogle Scholar
  78. 78.
    Sarkar K, Lahiri S, Sen K (2017) Incorporation of no-carrier added 200,203Pb and 200,201,202Tl in calcium alginate and hesperidin incorporated calcium alginate beads. Appl Radiat Isot 121:16PubMedGoogle Scholar
  79. 79.
    Nayak D, Banerjee A, Lahiri S (2007) Separation of no-carrier-added 66,67Ga produced in heavy ion-induced cobalt target using alginate biopolymers. Appl Radiat Isot 65:891PubMedGoogle Scholar
  80. 80.
    Nayak D, Banerjee A, Roy S, Lahiri S (2007) Speciation dependent studies on chromium absorption using calcium alginate and iron doped calcium alginate biopolymer. J Radioanal Nucl Chem 274:219Google Scholar
  81. 81.
    Banerjee A, Nayak D, Lahiri S (2007) Speciation-dependent studies on removal of arsenic by iron-doped calcium alginate beads. Appl Radiat Isot 65:769PubMedGoogle Scholar
  82. 82.
    Fairclough M, Prenant C, Ellis B, Boutin H, Mcmahon A, Brown G, Locatelli P, Jones AKP (2016) A new technique for the radiolabelling of mixed leukocytes with zirconium-89 for inflammation imaging with positron emission tomography. J Label Compd Radiopharm 59:270Google Scholar
  83. 83.
    Fairclough M, Ellis B, Boutin H, Jones AKP, McMahon A, Alzabin S, Gennari A, Prenant C (2017) Development of a method for the preparation of zirconium-89 radiolabelled chitosan nanoparticles as an application for leukocyte trafficking with positron emission tomography. Appl Radiat Isot 130:7PubMedGoogle Scholar
  84. 84.
    Egorin A, Tokar E, Zemskova L (2016) Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media. Radiochim Acta 104:657Google Scholar
  85. 85.
    Pivarciová L, Rosskopfová O, Galambos M, Rajec P, Hudec P (2016) Sorption of pertechnetate anions on chitosan. J Radioanal Nucl Chem 308:93Google Scholar
  86. 86.
    Elbarbary AM, Shafik HM, Ebeid NH, Ayoub SM, Othman SH (2015) Iodine-125 chitosan-vitamin C complex: preparation, characterization and application. Radiochim Acta 103:663Google Scholar
  87. 87.
    Roy K, Lahiri S (2006) A green method for synthesis of radioactive gold nanoparticles. Green Chem 8:1063Google Scholar
  88. 88.
    Roy K, Lahiri S (2008) In situ γ-radiation: one-step environmentally benign method to produce gold-palladium bimetallic nanoparticles. Anal Chem 80:7504PubMedGoogle Scholar
  89. 89.
    Mandal S, Lahiri S (2012) Synthesis of molybdenum nanoparticle by in situ γ-radiation. Appl Radiat Isot 70:2340PubMedGoogle Scholar
  90. 90.
    Choudhury D, Lahiri S, Naskar N (2017) Separation of lead and bismuth from proton irradiated lead-bismuth eutectic (LBE) target by differential precipitation. J Radioanal Nucl Chem 314:2551Google Scholar
  91. 91.
    Maiti M, Lahiri S, Kumar D, Choudhury D (2017) Separation of no-carrier-added astatine radionuclides from α-particle irradiated lead bismuth eutectic target: a classical method. Appl Radiat Isot 127:227PubMedGoogle Scholar
  92. 92.
    Maiti M, Lahiri S, Tomar BS (2011) Separation of no-carrier-added 107,109Cd from proton induced silver target: classical chemistry still relevant. J Radioanal Nucl Chem 288:115Google Scholar
  93. 93.
    Dutta B, Lahiri S, Tomar BS (2013) Separation of no-carrier-added rhenium from bulk tantalum by precipitation technique. Sep Sci Technol 48:2468Google Scholar
  94. 94.
    Kumar R, Sivaraman N, Sujatha K, Srinivasan TG, Vasudeva Rao PR (2007) Removal of plutonium and americium from waste matrices by supercritical carbon dioxide extraction. Radiochim Acta 95:577Google Scholar
  95. 95.
    Sujatha K, Pitchaiah KC, Sivaraman N, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2014) Recovery of plutonium from polymeric waste matrices using supercritical fluid extraction. Desalin Water Treat 52:470Google Scholar
  96. 96.
    Park J, Cho HR, Choi KS, Park KK, Park YJ (2018) Pertechnetate removal from aqueous solution using activated carbon modified with oxidizing and reducing agents. J Radioanal Nucl Chem 316:1281Google Scholar
  97. 97.
    Vanderheyden SRH, Ammel RV, Matura KS, Vanreppelen K, Schreurs S, Schroeyers W, Perman JY, Carlee R (2016) Adsorption of cesium on different types of activated carbon. J Radioanal Nucl Chem 310:301Google Scholar
  98. 98.
    Viglasova E, Dano M, Galambos M, Rosskopfova O, Rajec P, Novak I (2016) Column studies for the separation of 99mTc using activated carbon. J Radioanal Nucl Chem 307:591Google Scholar
  99. 99.
    Galambos M, Dan M, Viglasova E, Krivosudsky L, Rosskopfova O, Ńovak I, Berek D, Rajec P (2015) Effect of competing anions on pertechnetate adsorption by activated carbon. J Radioanal Nucl Chem 304:1219Google Scholar
  100. 100.
    Lu Y, Yu J, Cheng S (2015) Magnetic composite of Fe3O4 and activated carbon as an adsorbent for separation of trace Sr(II) from radioactive wastewater. J Radioanal Nucl Chem 303:2371Google Scholar
  101. 101.
    Gu B, Dowlena KE, Liang L, Clausen JL (1996) Efficient separation and recovery of technetium-99 from contaminated groundwater. Sep Technol 6:123Google Scholar
  102. 102.
    Mukhopadhyay B, Lahiri S (2007) Adsorption of 125Sb on alumina and titania surfaces. J Radioanal Nucl Chem 273:423Google Scholar
  103. 103.
    Kim T, Lee SK, Lee S, Lee JG, Kim SW (2017) Development of silver nanoparticle–doped adsorbents for the separation and recovery of radioactive iodine from alkaline solutions. Appl Radiat Isot 129:215PubMedGoogle Scholar
  104. 104.
    Attallah MF, Rizk SE, Afifi EME (2018) Efficient removal of iodine and chromium as anionic species from radioactive liquid waste using prepared iron oxide nanofibers. J Radioanal Nucl Chem 317:933Google Scholar
  105. 105.
    Lahiri S, Maiti M, Ghosh K (2015) Separation of no-carrier-added 111In and 109Cd from a-particle induced Ag target using glass wool surface. J Radioanal Nucl Chem 306:469Google Scholar
  106. 106.
    Lahiri S (2018) Alternatives of synthetic chemicals-chemicals driven from foods and related materials. Acta Agraria Debreceniensis 150, University of Debrecen, Hungary, p. 291Google Scholar
  107. 107.
    Monteiro PV, Prakash V (1994) Effect of proteases on arachin, conarachin-I, and conarachin-II from peanut (Arachis-hypogaea L.). J Agric Food Chem 42:268Google Scholar
  108. 108.
    Roy K, Das L, Lahiri S (2009) Studies on mercury binding affinity of conarachin extracted from groundnut (Arachis hypogeae), Nuclear and Radiochemistry Symposium, NUCAR 2009, Mithibai College, Mumbai, India, 7–10 January, 2009Google Scholar
  109. 109.
    Roy K, Ghosh K, Banerjee A, Mukhopadhyay D, Lahiri S (2009) Biomolecule–metal interactions: applications in extraction and separation techniques. J Biochem Eng 45:82Google Scholar
  110. 110.
    Nayak D, Hazra KM, Laskar S, Lahiri S (2008) Preconcentration of gold by Mimusops elengi seed proteins. J Radioanal Nucl Chem 275:423Google Scholar
  111. 111.
    Nayak D, Lahiri S (2002) Production of tracer packet of heavy and toxic elements. J Radioanal Nucl Chem 254:619Google Scholar
  112. 112.
    Datta Samanta T, Laskar S, Nayak D, Lahiri S (2007) Studies on metal–protein interactions: Inter-comparison among various approaches. J Radioanal Nucl Chem 273:323Google Scholar
  113. 113.
    Ghosh K, Lahiri S (2007) Radiometric study on bioaccumulation of gold by an alkaloid extracted from fruits of Piper nigrum. J Radioanal Nucl Chem 274:233Google Scholar
  114. 114.
    Seyitoglu B, Lambrecht FY, Durkan K (2009) Labeling of apigenin with 131I and bioactivity of 131I-apigenin in male and female rats. J Radioanal Nucl Chem 279:867Google Scholar
  115. 115.
    Barolli MG, Pomilio AB (1997) Synthesis of [131I]-iodinated quercetin. J Label Compd Radiopharm 39:927Google Scholar
  116. 116.
    Hosseinimehr SJ, Ahmadi A, Taghvai R (2010) Preparation and biodistribution study of technetium-99m-labeled quercetin as a potential radical scavenging agent. J Radioanal Nucl Chem 284:563Google Scholar
  117. 117.
    Xie Q, Li X, Wang G, Hou X, Wang Y, Yu H, Qu C, Luo S, Cui Y, Xia C, Wang R (2017) Preparation and evaluation of 131I-quercetin as a novel radiotherapy agent against dedifferentiated thyroid cancer. J Radioanal Nucl Chem 311:1697Google Scholar
  118. 118.
    Choi MH, Rho JK, Kang JA, Shim HE, Nam YR, Yoon S, Kim HR, Choi DS (2016) Efficient radiolabeling of rutin with 125I and biodistribution study of radiolabeled rutin. J Radioanal Nucl Chem 308:477Google Scholar
  119. 119.
    Ghosh K, Naskar N, Choudhury D, Lahiri S (2017) Separation of no-carrier-added 88Zr from proton induced bulk yttrium target by naturally synthesized hesperidin. In: Proceedings of 13th DAE-BRNS biennial symposium on Nuclear and Radiochemistry- NUCAR 2017 KIIT, BhubhaneswarGoogle Scholar
  120. 120.
    Lahiri S, Choudhury D, Naskar N, Ghosh K (2018) Studies on 208Po-Hesperidin association. In: 4th International Conference on Application of Radiotracers and Energetic Beams in sciences, 11–17 November, 2018, Ffort Raichak, KolkataGoogle Scholar
  121. 121.
    Kiu Kim S, Ham I, Bu Y, Kim H, Cho HJ, Choi H (2008) Study on the attributive channel theory of herbal medicine by the pharmacodynamic research of I-131 labelled hesperitin. Kor J Herbol 23:117Google Scholar
  122. 122.
    Jeon J, Ma Y, Choi DS, Jang BS, Kang JA, Nam YR, Yoon S, Park SH (2015) Radiosynthesis of 123I-labeled hesperetin for biodistribution study of orally administered hesperetin. J Radioanal Nucl Chem 306:437Google Scholar
  123. 123.
    Ocakoglu K, Er O, Kiyak G, Lambrecht FY, Gunduz C, Kayabasi C (2015) 131I–Zn–Chlorophyll derivative photosensitizer for tumor imaging and photodynamic therapy. Int J Pharm 493:96PubMedGoogle Scholar
  124. 124.
    Diao Y, Zhao W, Li Y, Liao L, Wang O, Liu J, Zhao X, Yu C, Cui Z (2014) Radiolabeling of EGCG with 125I and its biodistribution in mice. J Radioanal Nucl Chem 301:167Google Scholar
  125. 125.
    Leamon C, Parker MA, Vlahov IR, Xu LC, Reddy JA, Vetzel M, Douglas N (2002) Synthesis and biological evaluation of EC20: A new folate-derived, 99mTc-based radiopharmaceutical. Bioconjugate Chem 13:1200Google Scholar
  126. 126.
    Liang L, Zhang X, Su X, Li J, Tian Y, Xue H, Xu H (2017) 99mTc-labeled oligomeric nanoparticles as potential agents for folate receptor-positive tumor targeting. J Label Compd Radiopharm 61:54Google Scholar
  127. 127.
    Orci L, Ravazzola M, Perrelet A (1984) (Pro) insulin associates with golgi membranes of pancreatic B cells. Proc Natl Acad Sci USA 81:6743PubMedGoogle Scholar
  128. 128.
    Liu N, Yang Y, Zan L, Liao J, Jin J (2007) Astatine-211 labeling of insulin: Synthesis and preliminary evaluation in vivo and in vitro. J Radioanal Nucl Chem 272:85Google Scholar
  129. 129.
    Lahiri S, Roy K, Sen S (2008) Complexation study on no-carrier-added astatine with insulin: a candidate radiopharmaceutical. Appl Radiat Isotopes 66:1901Google Scholar
  130. 130.
    Roy K, Sen S, Lahiri S (2008) Studies on 198Au-insulin complex: A proposed radiopharmaceutical for targeted therapy. Metal Ions Biol 10:552Google Scholar
  131. 131.
    Mandal S, Lahiri S (2012) Studies on dynamic dissociation constant of 99Mo–insulin complex. J Radioanal Nucl Chem 292:859Google Scholar
  132. 132.
    Guenther KJ, Yoganathan S, Garofalo R, Kawabata T, Strack T, Labiris R, Dolovich M, Chirakal R, Valliant JF (2006) Synthesis and in vitro evaluation of 18F- and 19F-labeled insulin: a new radiotracer for PET-based molecular imaging studies. J Med Chem 49:1466PubMedGoogle Scholar
  133. 133.
    Jalilian AR, Garosi J, Gholami E, Akhlaghi M, Saddadi F, Bolourinovin F, Karimian A (2007) Evaluation of [67Ga]-insulin for insulin receptor imaging. Nucl Med Rev 10:71Google Scholar
  134. 134.
    Jalilian AR, Garousi J, Akhlaghi M, Rowshanfarzad P (2009) Development of 111In labeled insulin for receptor imaging/therapy. J Radioanal Nucl Chem 279:791Google Scholar
  135. 135.
    Maiti M, Sen K, Sen S, Lahiri S (2011) Studies on stabilities of some human chorionic gonadotropin complexes with β-emitting radionuclides. Appl Radiat Isot 69:316PubMedGoogle Scholar
  136. 136.
    Kolena J, Horkovics R, Sebokova E, Blazicek P (1985) Influence of cholesterol and unsaturated fatty acids on [125l]hCG binding to rat testicular membranes. Endocrinol Exp 19:195PubMedGoogle Scholar
  137. 137.
    Presl J, Pospisil J, Figarova V, Wagner V (1972) Developmental changes in uptake of radioactivity by the ovaries, pituitary and uterus after 125I-labelled human chorionic gonadotrophin administration in rats. J Endocr 52:585PubMedGoogle Scholar
  138. 138.
    Gordin M, Shani J, Fleisher M, Nizan M, Gera J, Atlan H (1983) Ovarian imaging with [131I]HCG. J Nucl Med Biol 10:245Google Scholar
  139. 139.
    Begent RHJ, Searle F, Stanway G, Jewkes RF, Jones BE, Vernon P, Bagshawe KD (1980) Radioimmunolocalization of tumours by external scintigraphy after administration of 131I-antibody to human chorionic gonadotrophin: preliminary communication. J R Soc Med 73:624PubMedPubMedCentralGoogle Scholar
  140. 140.
    Christensen TB, Marqversen J, Engbaek F, Berger P, Bacher T, Maase HV (1999) Validation of 125I-hCG as a marker for elimination of hCG and stability of 125I-hCG after in vivo injection in humans. Br J Cancer 80:1582PubMedPubMedCentralGoogle Scholar
  141. 141.
    Jalilian AR, Khoshdel MR, Garousi J, Yousefnia H, Hosseini M, Rajabifar S, Sardari D (2009) Development of a radiolabeled-human chorionic gonadotropin. Acta Pharm 59:421PubMedGoogle Scholar
  142. 142.
    Banerjee A, Lahiri S (2009) Albumin metal interaction: a multielemental radiotracer. J Radioanal Nucl Chem 279:733Google Scholar
  143. 143.
    Ji A, Zhang Y, Lv G, Lin J, Qi N, Ji F, Du M (2018) 131I radiolabeled immune albumin nanospheres loaded with doxorubicin for in vivo combinatorial therapy. J Label Compd Radiopharm 61:362Google Scholar
  144. 144.
    Basuli F, Zhang X, Woodroofe CC, Jagoda EM, Choyke PL, Swenson RE (2017) Fast indirect fluorine-18 labeling of protein/peptide using the useful 6-fluoronicotinic acid-2,3,5,6-tetrafluorophenyl prosthetic group: a method comparable to direct fluorination. J Label Compd Radiopharm 60:168Google Scholar
  145. 145.
    Czeskis B, Satonin DK (2017) Synthesis of C-14 radiolabeled glucagon receptor antagonist and its use in a human mass balance study. J Label Compd Radiopharm 60:110Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Saha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Department of ChemistryUniversity of CalcuttaKolkataIndia

Personalised recommendations