Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 3, pp 2363–2372 | Cite as

Murataite: a matrix for immobilizing waste generated in radiochemical reprocessing of spent nuclear fuel

  • Andrey A. LizinEmail author
  • Sergey V. Tomilin
  • Sergey S. Poglyad
  • Elena A. Pryzhevskaya
  • Sergey V. Yudintsev
  • Sergey V. Stefanovsky


Incorporation of waste from spent nuclear fuel pyrochemical reprocessing and calcines from the decontamination of glove box and hot cell equipment into murataite-based ceramics was studied. The phase and chemical compositions of the ceramics containing precipitates simulating fission products in molten chlorides were examined. The radiation stability of murataite matrices was studied by incorporating 244Cm isotope (1.8 wt%). In the ceramics produced by melting at 1325 and 1350 °C the murataite phases was rendered to be X-ray amorphous at doses of 2.46 × 1018 and 2.53 × 1018 α-decay/g (0.21 dpa), while for the sample sintered at 1250 °C the amorphization dose was found to be 2.73 × 1018 α-decay/g (0.21 dpa). The murataite structure was recovered after the annealing at 1250 °C for 5 h in air. Both the pristine and amorphized samples had very low leachability of Cm and major elements. Production of highly durable murataite-based ceramics containing waste surrogate after spent nuclear fuel (SNF) pyrochemical reprocessing and calcine after the evaporation of decontamination solutions were demonstrated.


Murataite Chemical durability Radiation stability Curium Oxide precipitate Calcine 



The authors are grateful two anonymous reviewers which comments allowed to improve the paper.


  1. 1.
    Adams JW, Botinelly T, Sharp WN, Robinson K (1974) Murataite, a new complex oxide from EI Paso Country, Colorado. Am Miner 59:172–176Google Scholar
  2. 2.
    Portnov AM, Dubakina LS, Krivokoneva GK (1981) Murataite in predicted association with landauite. Proc USSR Acad Sci 261:741–744Google Scholar
  3. 3.
    Ercit TS, Hawthorne FC (1995) Murataite, a UB12 derivative structure with condensed Keggin molecules. Can Miner 33:1223–1229Google Scholar
  4. 4.
    Krivovichev SV, Yudintsev SV, Stefanovsky SV, Organova NI, Karimova OV, Urusov VS (2010) Murataite–pyrochlore series: a family of complex oxides with nanoscale pyrochlore clusters. Angew Chem Int Ed 49:9982–9984CrossRefGoogle Scholar
  5. 5.
    Laverov NP, Urusov VS, Krivovichev SV, Pakhomova AS, Stefanovsky SV, Yudintsev SV (2011) Modular nature of the polysomatic pyrochlore-murataite series. Geol Ore Deposits 53:307–329CrossRefGoogle Scholar
  6. 6.
    Krivovichev SV, Urusov VS, Yudintsev SV, Stefanovsky SV, Karimova OV, Organova NI (2012) Crystal structure of murataite Mu-5, a member of the murataite—pyrochlore polysomatic series. In: Krivovichev S (ed) Minerals as advanced materials II. Springer, Berlin, pp 293–304CrossRefGoogle Scholar
  7. 7.
    Pakhomova AS, Krivovichev SV, Yudintsev SV, Stefanovsky SV (2013) Synthetic murataite-3C, a complex form for long-term immobilization of nuclear waste: crystal structure and its comparison with natural analogues. Z Kristallogr 228:151–156CrossRefGoogle Scholar
  8. 8.
    Pakhomova AS, Krivovichev SV, Yudintsev SV, Stefanovsky SV (2016) Polysomatism and structural complexity: structure model for murataite-8C, a complex crystalline matrix for the immobilization of high-level radioactive waste. Eur J Miner 28:205–214CrossRefGoogle Scholar
  9. 9.
    Morgan PED, Ryerson FJ (1982) A new “cubic” crystal compound. J Mater Sci Lett 1:351–352CrossRefGoogle Scholar
  10. 10.
    Laverov NP, Omel’yanenko BI, Yudintsev SV, Nikonov BS, Sobolev IA, Stefanovskii SV (1997) Mineralogy and geochemistry of matrices for the immobilization of high-level radioactive wastes. Geol Ore Deposits 39:179–208Google Scholar
  11. 11.
    Laverov NP, Gorshkov AI, Yudintsev SV, Sivtsov AV, Lapina MI (1998) New structural modifications of synthetic murataite. Dokl Earth Sci 363:540–543Google Scholar
  12. 12.
    Urusov VS, Organova NI, Karimova OV, Yudintsev SV, Stefanovskii SV (2005) Synthetic “murataites” as modular members of a pyrochlore—murataite polysomatic series. Dokl Earth Sci 401:319–325Google Scholar
  13. 13.
    Urusov VS, Organova NI, Karimova OV, Yudintsev SV, Ewing RC (2007) A modular model of the crystal structure of the pyrochlore—murataite polysomatic series. Crystallogr Rep 52:37–46CrossRefGoogle Scholar
  14. 14.
    Laverov NP, Yudintsev SV, Stefanovsky SV, Omel’yanenko BI, Nikonov BS (2006) Murataite as a universal matrix for immobilization of actinides. Geol Ore Deposits 48:335–356CrossRefGoogle Scholar
  15. 15.
    Pyrochemical Separations in Nuclear Applications (2004) Paris: OECD NEA. Report N5427Google Scholar
  16. 16.
    Spent fuel reprocessing options (2008) Vienna: IAEA, Report IAEA-NECDOC-1587Google Scholar
  17. 17.
    Skiba OV, Kisly VA, Savochkin YP, Vavilov SK (2012) Pyro-electrochemical processes in the fuel cycle of fast neutron reactors. JSC “SSC RIAR”, DimitrovgradGoogle Scholar
  18. 18.
    GOST 20286-90 (1990) Radioactive contamination and decontamination. Terms and definitions. USSR National Committee for product quality control and standards. Publishing House for Standards, MoscowGoogle Scholar
  19. 19.
    Zimon AD (1975) Decontamination. Atomizdat, MoscowGoogle Scholar
  20. 20.
    Lian J, Yudintsev SV, Stefanovsky SV, Kirjanova OI, Ewing RC (2002) Ion-induced amorphization of murataite. Mater Res Soc Symp Proc 713:455–460Google Scholar
  21. 21.
    Lian J, Wang LM, Ewing RC, Yudintsev SV, Stefanovsky SV (2004) Radiation effects in murataite ceramics. Mater Res Soc Symp Proc 807:225–230CrossRefGoogle Scholar
  22. 22.
    Stefanovsky SV, Lukinykh AN, Tomilin SV, Lizin AA, Yudintsev SV (2008) Alpha-decay damage in murataite-based ceramics. Mater Res Soc Symp Proc 1107:389–394CrossRefGoogle Scholar
  23. 23.
    Yudintsev SV, Stefanovsky SV, Nikonov BS, Omelianenko BI (2001) Phase and chemical stability of murataite containing uranium, plutonium and Rare Earth. Mater Res Soc Symp Proc 663:357–365CrossRefGoogle Scholar
  24. 24.
    Patent 2643362 Russian Federation, IPC G21F 9/16 (2006.01) Method to treat radioactive solutions after decontamination of hot cell equipment surfaces. Lizin AA, Tomilin SV, Poglyad SS (2018) patent owner—Russian Federation presented by Rosatom State Corporation, Joint Stock Company “State Scientific Center – Research Institute of Atomic Reactor” No. 2017101380, patent application: January 16, 2017, patent publication: February 01, 2018. Bulletin No. 4, 2018, p 2Google Scholar
  25. 25.
    Nuclear Waste Materials Handbook. Test Methods. (1981) Rep. DOE/TIC-11400DOE. Washington, DC: Technical Information CenterGoogle Scholar
  26. 26.
    Stefanovsky SV, Yudintsev SV, Giere R, Lumpkin GR (2004) Nuclear Waste Forms Energy, Waste and the Environment: A Geological Perspective, vol 236. Geological Society, Special Publication, London, pp 37–63Google Scholar
  27. 27.
    Weber WJ, Ewing RC, Catlow CRA, Diaz de la Rubia T, Hobbs LW, Kinoshita C, Hj Matzke, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484CrossRefGoogle Scholar
  28. 28.
    Laverov NP, Yudintsev SV, Yudintseva TS, Stefanovsky SV, Ewing R, Ch Lian J, Utsunomiya S, Wang LM (2003) Effect of radiation on properties of confinement matrices for immobilization of actinide-bearing wastes. Geol Ore Deposits 45:483–513Google Scholar
  29. 29.
    Yudintsev S, Stefanovsky S, Ewing R (2007) Actinide host phases as radioactive waste forms. In: Krivovichev S, Burns P, Tananaev I (eds) Structural chemistry of inorganic actinide compounds. Elsevier B.V., Amsterdam, pp 457–490CrossRefGoogle Scholar
  30. 30.
    Ringwood AE (1985) Disposal of high-level nuclear wastes: a geological perspective. Mineral Mag 49:159–176CrossRefGoogle Scholar
  31. 31.
    Stefanovsky SV, Yudintsev SV, Perevalov SA, Startseva IV, Varlakova GA (2007) Leach resistance of murataite-based ceramics containing actinides. J Alloys Compd 444–445:618–620CrossRefGoogle Scholar
  32. 32.
    Smith KL, Lumpkin GR, Blackford MG, Hambley M, Day RA, Hart KP, Jostsons A (1997) Characterization and leaching behavior of plutonium-bearing Synroc-C. Mater Res Soc Symp Proc 465:1267–1272CrossRefGoogle Scholar
  33. 33.
    Hart KP, Vance ER, Stewart MWA, Weir J, Carter MR, Hanbley M, Brownscombe A, Day RA, Leung S, Ball CJ, Ebbinghaus B, Gray L, Kan T (1998) Leaching behavior of zirconolite-rich Synroc used to immobilize ‘high-fired’ plutonium oxide. Mater Res Soc Symp Proc 506:161–168CrossRefGoogle Scholar
  34. 34.
    Hart KP, Zhang Y, Loi E, Aly Z, Stewart MWA, Brownscombe A, Ebbinghaus B, Boucier W (2000) Aqueous durability of titanate ceramics designed to immobilize excess plutonium. Mater Res Soc Symp Proc 608:353–358CrossRefGoogle Scholar
  35. 35.
    Stennett MC, Backhouse DJ, Freeman CL, Hyatt NC (2013) Ceramic immobilisation options for technetium. Mater Res Soc Symp Proc 1518:111–116CrossRefGoogle Scholar
  36. 36.
    Gotovchikov VT, Seredenko VA, Osipov IV (2003) Industrial experience and perspectives related to application of vacuum induction furnace with cold crucibles. Nonferrous Met 4:68–72Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Andrey A. Lizin
    • 1
    Email author
  • Sergey V. Tomilin
    • 1
  • Sergey S. Poglyad
    • 1
  • Elena A. Pryzhevskaya
    • 1
  • Sergey V. Yudintsev
    • 2
    • 3
  • Sergey V. Stefanovsky
    • 3
  1. 1.Radiochemical Technologies DivisionJoint Stock Company “State Scientific Centre - Research Institute of Atomic Reactors”DimitrovgradRussian Federation
  2. 2.Institute of Geology of Ore Deposits, Petrography, Mineralogy and GeochemistryRASMoscowRussian Federation
  3. 3.A.N. Frumkin Institute of Physical Chemistry and ElectrochemistryRASMoscowRussian Federation

Personalised recommendations