Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 3, pp 2329–2334 | Cite as

Monte Carlo simulation of environmental background sources of a HPGe detector operating in underground laboratory

  • Veronika PalušováEmail author
  • Robert Breier
  • Pavel P. Povinec


The overlying rock of underground laboratories provides excellent radiation shielding necessary for many experiments searching for extremely rare nuclear and astroparticle events. Monte Carlo simulations of HPGe detector background and attenuation of gamma-ray fluxes with different shielding configurations were carried out for an underground laboratory. It has been found that even a small radioactive contamination of the shielding material may increase gamma-ray fluxes in underground laboratory by several orders of magnitude.


Gamma-ray spectrometry Background Monte Carlo simulation Underground laboratory 



The authors are thankful to Prof. F. Piquemal and Dr. M. Chauveau for initiating simulation studies for the SuperNEMO experiment, and for valuable guidance and suggestions. This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0576 and APVV-15-0636, and by the EU Research and Development Operational Program funded by the ERDF (Projects No. 26240120012, 26240120026 and 26240220004).


  1. 1.
    Coccia E (2006) Underground laboratories in Europe. J Phys Conf Ser 39:497CrossRefGoogle Scholar
  2. 2.
    Votano L. (2010) Underground Laboratories. In: Proceedings of 6th Patras workshop on Axions, WIMPs and WISPS
  3. 3.
    Pandola L. (2011) Overview of the European Underground Facilities. In: AIP conference proceedings, vol 1338.
  4. 4.
    Budjáš D et al (2009) Gamma-ray spectrometry of ultra low levels of radioactivity within the material screening program for the GERDA experiment. Appl Radiat Isot 67:755–758CrossRefGoogle Scholar
  5. 5.
    Breier R et al (2017) Monte Carlo simulation of background characteristics of a HPGe detector operating underground in the Gran Sasso National Laboratory. Appl Radiat Isot 126:188–190CrossRefGoogle Scholar
  6. 6.
    Povinec PP et al (2008) New isotope technologies in environmental physics. Acta Phys Slov 58:1–154CrossRefGoogle Scholar
  7. 7.
    Heusser G (1995) Low-radioactivity background techniques. Ann Rev Nucl Part Sci 45:543–590CrossRefGoogle Scholar
  8. 8.
    Arnold R et al (2010) Probing new physics models of neutrinoless double beta-decay with SuperNEMO. Eur Phys J C 70:927–943CrossRefGoogle Scholar
  9. 9.
    Povinec PP (2017) Background constrains of the SuperNEMO experiment for neu- trinoless double beta-decay searches. Nucl Instrum Meth Phys Res A 845:398–403CrossRefGoogle Scholar
  10. 10.
    Povinec PP (2017) Analysis of radionuclides at ultra-low levels: A comparison of low and high- energy mass spectrometry with gamma-spectrometry for radiopurity measurements. Appl Rad Isot 126:26–30CrossRefGoogle Scholar
  11. 11.
    Povinec PP (2018) New ultra-sensitive radioanalytical technologies for new science. J. Radioanal. Nucl. Chem. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu R. X. (2015) UK low-background infrastructure for delivering SuperNEMO. arXiv:1504.08335 [physics.ins-det]
  13. 13.
    Loaiza P et al (2015) Obelix, a new low-background HPGe at Modane underground laboratory. AIP Conf Proc 1672(1):130002CrossRefGoogle Scholar
  14. 14.
    Brudanin VB et al (2017) Development of the ultra-low background Ge spectrometer OBELIX at Modane underground laboratory. JINST 12:P02004CrossRefGoogle Scholar
  15. 15.
    Vojtyla P, Povinec PP (2000) A Monte Carlo simulation of background characteristics of low-level HPGe detectors. Appl Radiat Isot 53(1–2):185–190CrossRefGoogle Scholar
  16. 16.
    Agostinelli S et al (2003) Geant4 - a simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303CrossRefGoogle Scholar
  17. 17.
    Schmidt B et al (2013) Muon-induced background in the EDELWEISS dark matter search. Astropart Phys 44:28–39CrossRefGoogle Scholar
  18. 18.
    Lemrani R et al (2006) Update of neutron studies in EDELWEISS. J Phys. CrossRefGoogle Scholar
  19. 19.
    Savvidis I et al (2010) Underground low flux neutron background measurements in LSM using a large volume (1 m3) spherical proportional counter. J Phys Conf Ser 203:012030CrossRefGoogle Scholar
  20. 20.
    Ohsumi H et al (2002) Gamma-ray flux in the Fréjus underground laboratory measured with NaI detector. Nucl Instrum Methods Phys Res A 482:832–839CrossRefGoogle Scholar
  21. 21.
    Brudanin VB et al (2017) The low-background HPGe gamma-spectrometer OBELIX for the investigation of the double beta decay to excited states. J Appl Phys. CrossRefGoogle Scholar
  22. 22.
    Breier R et al (2018) Environmental radionuclides as contaminants of HPGe gamma-ray spectrometers: Monte Carlo simulations for Modane underground laboratory. J Environ Radioact 190–191:134–140CrossRefGoogle Scholar
  23. 23.
    Tenzer C. (2008) Monte-Carlo background simulations of present and future detectors in x-ray astronomy Proc. SPIE 7011, Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray, 70112G
  24. 24.
    Theodorsson P (1996) Measurement of weak radioactivity. World Scientific, Singapore, p 126CrossRefGoogle Scholar
  25. 25.
    Povinec PP et al (2018) Ultra-sensitive Radioanalytical technologies for underground physics experiments. J Radioanal Nucl Chem. 25:96. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia

Personalised recommendations