Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 2, pp 1389–1400 | Cite as

Characterization of uraninite using a FIB–SEM approach and its implications for LA–ICP–MS analyses

  • Stefanie R. Lewis
  • Antonio Simonetti
  • Loretta Corcoran
  • Tyler L. Spano
  • Brandon W. Chung
  • Nick E. Teslich
  • Peter C. Burns
Article
  • 99 Downloads

Abstract

Focused ion beam (FIB) coupled with scanning electron microscopy (SEM) investigations were performed on pristine and altered areas of two uraninite samples in order to better understand their 3-dimensional mineralogical and chemical nature, and their impact on trace element abundances obtained by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) analyses. Trace element contents determined by both LA- and solution mode (SM)–ICP–MS analyses together with FIB results identify Pb as the optimal internal standard for LA–ICP–MS analyses of uraninite since it is a major chemical constituent, part of the structure, and similar in abundance to the trace elements of interest.

Keywords

Uraninite Nuclear forensics Focused ion beam Laser ablation Inductively coupled plasma mass spectrometry Trace elements 

Notes

Acknowledgements

Funding for this project was provided by the Department of Homeland Security (Grant# 2014-DN-077-ARI082). The authors thank Dr. Ian Steele for his help and expertise with operation of the EMP and to Notre Dame’s Center of Environmental Science and Technology (CEST) for use of the µ-XRF. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

Supplementary material

10967_2018_6232_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (DOCX 4045 kb)

References

  1. 1.
    Janeczek J, Ewing RC (1992) Structural formula of uraninite. J Nucl Mater 190:128–132CrossRefGoogle Scholar
  2. 2.
    Hore-Lacy I (2016) Uranium for nuclear power: resources, mining and transformation to fuel. Woodhead Publishing, SawstonCrossRefGoogle Scholar
  3. 3.
    Frimmel HE, Schedel S, Brätz H (2014) Uraninite chemistry as forensic tool for provenance analysis. Appl Geochem 48:104–121.  https://doi.org/10.1016/j.apgeochem.2014.07.013 CrossRefGoogle Scholar
  4. 4.
    Spano TL, Simonetti A, Balboni E, Dorais C, Burns PC (2017) Trace element and U isotope analysis of uraninite and ore concentrate: applications for nuclear forensic investigations. Appl Geochem 84:277–285.  https://doi.org/10.1016/j.apgeochem.2017.07.003 CrossRefGoogle Scholar
  5. 5.
    Uvarova YA, Kyser TK, Geagea ML, Chipley D (2014) Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits. Geochim Cosmochim Acta 146:1–17.  https://doi.org/10.1016/j.gca.2014.09.034 CrossRefGoogle Scholar
  6. 6.
    Spano TL, Simonetti A, Wheeler T, Carpenter G, Freet D, Balboni E, Dorais C, Burns PC (2017) A novel nuclear forensic tool involving deposit type normalized rare earth element signatures. Terra Nova.  https://doi.org/10.1111/ter.12275 CrossRefGoogle Scholar
  7. 7.
    Mercadier J, Cuney M, Lach P, Boiron M, Bonhoure J, Richard A, Leisen M, Kister P (2011) Origin of uranium deposits revealed by their rare earth element signature. Terra Nova.  https://doi.org/10.1111/j.1365-3121.2011.01008.x CrossRefGoogle Scholar
  8. 8.
    Balboni E, Jones N, Spano T, Simonetti A, Burns PC (2016) Chemical and Sr isotopic characterization of North America uranium ores: nuclear forensic applications. Appl Geochem 74:24–32.  https://doi.org/10.1016/j.apgeochem.2016.08.016 CrossRefGoogle Scholar
  9. 9.
    Varga Z, Wallenius M, Mayer K, Meppen M (2011) Analysis of uranium ore concentrates for origin assessment. Proc Radiochim Acta 1:1–4.  https://doi.org/10.1524/rcpr.2011.0004 CrossRefGoogle Scholar
  10. 10.
    Bellucci JJ, Simonetti A, Koeman EC, Wallace C, Burns PC (2014) A detailed geochemical investigation of post-nuclear detonation trinitite glass at high spatial resolution: delineating anthropogenic vs. natural components. Chem Geol 365:69–86.  https://doi.org/10.1016/j.chemgeo.2013.12.001 CrossRefGoogle Scholar
  11. 11.
    Dustin MK, Koeman EC, Simonetti A, Torrano Z, Burns PC (2016) Comparative investigation between in situ laser ablation versus bulk sample (solution mode) inductively coupled plasma mass spectrometry (ICP-MS) analysis of trinitite post-detonation materials. Appl Spectrosc 70:1446–1455CrossRefGoogle Scholar
  12. 12.
    Lach P, Mercadier J, Dubessy J, Boiron MC, Cuney M (2013) In situ quantitative measurement of rare earth elements in uranium oxides by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res.  https://doi.org/10.1111/j.1751-908X.2012.00161.x CrossRefGoogle Scholar
  13. 13.
    Depiné M, Frimmel HE, Emsbo P, Koeng AE (2013) Trace element distribution in uraninite from Mesoarchaean Witwatersrand conglomerates (South Africa) supports placer model and magmatogenic source. Miner Depos 48:423–435.  https://doi.org/10.1007/s00126-013-0458-3 CrossRefGoogle Scholar
  14. 14.
    Zhao D, Ewing RC (2000) Alteration products of uraninite from the Colorado Plateau. Radiochim Acta 88:739–749Google Scholar
  15. 15.
    Wirth R (2009) Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261:217–229.  https://doi.org/10.1016/j.chemgeo.2008.05.019 CrossRefGoogle Scholar
  16. 16.
    Simonetti A, Heaman LM, Hartlaub RP, Creaser RA, MacHattie TG, Böhm C (2005) U–Pb zircon dating by laser ablation-MC-ICP-MS using a new multiple ion counting Faraday collector array. J Anal Atom Spectrom 20:677–686.  https://doi.org/10.1039/b504465k CrossRefGoogle Scholar
  17. 17.
    Schurr MR, Donohue PH, Simonetti A, Dawson E (2018) Multi-element and lead isotope characterization of early nineteenth century pottery sherds from Native American and Euro-American sites. J Archaeol Sci Rep 20:390–399Google Scholar
  18. 18.
    Miller RG (1982) The geochronology of uranium deposits in the Great Bear Batholith, Northwest Territories. Can J Earth Sci. 19:1428–1448CrossRefGoogle Scholar
  19. 19.
    Decrée S, Deloule É, De Putter T, Dewaele S, Mees F, Yans J, Marignac C (2011) SIMS U–Pb dating of uranium mineralization in the Katanga Copperbelt: constraints for the geodynamic context. Ore Geol Rev 40:81–89.  https://doi.org/10.1016/j.oregeorev.2011.05.003 CrossRefGoogle Scholar
  20. 20.
    Dahlkamp FJ (1991) Uranium ore deposits. Springer, BerlinGoogle Scholar
  21. 21.
    Cuney M (2009) The extreme diversity of uranium deposits. Miner Depos 44:3–9.  https://doi.org/10.1007/s00126-008-0223-1 CrossRefGoogle Scholar
  22. 22.
    Deditius AP, Utsunomiya S, Ewing RC (2007) Fate of trace elements during alteration of uraninite in a hydrothermal vein-type U-deposit from Marshall Pass, Colorado, USA. Geochim Cosmochim Acta 71:4954–4973.  https://doi.org/10.1016/j.gca.2007.08.008 CrossRefGoogle Scholar
  23. 23.
    Brobst DA (1962) Geology of the Spruce Pine District, Avery, Mitchell, and Yancey Counties, North Carolina. US Government Printing Office, Washington, DCGoogle Scholar
  24. 24.
    Korzeb SL, Foord EE, Lichte FE (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Can Miner 35:135–144Google Scholar
  25. 25.
    Shaub BM (1938) The occurrence, crystal habit and composition of the uraninite from the Ruggles Mine, near Grafton Center, New Hampshire. Am Miner 23:334–341Google Scholar
  26. 26.
    Olson JC (1941) Mica-bearing Pegmatites of New Hampshire. US Government Printing Office, Washington, DCCrossRefGoogle Scholar
  27. 27.
    Granger HC, Raup RB (1962) Reconnaissance study of uranium deposits in Arizona. US Government Printing Office, Washington, DCGoogle Scholar
  28. 28.
    Burns PC, Finch R (1999) Uranium: mineralogy, geochemistry and the environment. Mineralogical Society of America, ChantillyGoogle Scholar
  29. 29.
    van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA–ICP–MS: appendix. In: Sylvester PJ (ed) Laser ablation–ICP–mass spectrometry in the earth sciences: principles and applications, vol 29. Short course series. Mineralogical Association of Canada, QuebecGoogle Scholar
  30. 30.
    Jenner GA, Longerich HP, Jackson SE, Fryer BJ (1990) ICP-MS A powerful tool for high-precision trace-element analysis in Earth sciences: evidence from analysis of selected U.S.G.S. reference samples. Chem Geol 83:133–148.  https://doi.org/10.1016/0009-2541(90)90145-W CrossRefGoogle Scholar
  31. 31.
    Alexandre P, Kyser KT (2005) Effects of cationic substitutions and alteration in uraninite. Can Miner 43:1005–1017CrossRefGoogle Scholar
  32. 32.
    Finch RJ, Murakami T (1999) Systematics and paragenesis of uranium minerals. In: Burns PC, Ewing RC (eds) Uranium: mineralogy and geochemistry, vol 38. Mineralogical Society of America, Chantilly, pp 91–179Google Scholar
  33. 33.
    Alexandre P, Kyser K, Layton-Matthews D, Joy B, Uvarova Y (2015) Chemical compositions of natural uraninite. Can Miner.  https://doi.org/10.3749/canmin.1500017 CrossRefGoogle Scholar
  34. 34.
    Balboni E, Simonetti A, Spano T, Cook ND, Burns PC (2017) Applied geochemistry rare-earth element fractionation in uranium ore and its U(VI) alteration minerals. Appl Geochem 87:84–92.  https://doi.org/10.1016/j.apgeochem.2017.10.007 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA

Personalised recommendations