Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 3, pp 2407–2413 | Cite as

Application of quantum mechanical simulations for studying the radiolytic stability of prospective extractants in the nuclear fuel cycle

  • Tomáš Koubský
  • Jakub Luštinec
Article

Abstract

Diglycolamides (DGA) play a crucial role in the advanced spent nuclear fuel reprocessing. This work extends the portfolio of theoretically calculated properties of such organic extractants related to the radiolytic stability in the partitioning processes. The radiolytic stability of selected DGA ligands (TMDGA, TEDGA, Me-TEDGA, and Me2-TEDGA) was studied by the theoretical simulation methods based on quantum mechanics. As the most suitable indicator, the calculated Fukui functions were in good correlation with the trend of increased stability with increasing molecular weight. The Fukui charges also brought the explanation why TMDGA most likely does not degrade in the ether group, unlike the other ligands.

Keywords

Diglycolamides Partitioning and transmutation Density functional theory Radiolytic stability Fukui function TEDGA 

Notes

Acknowledgements

This work was supported by the GENIORS Project (H2020 Euratom Research and Innovation Programme, No. 755171) and by the Czech Technical University in Prague (Grant No. SGS16/245/OHK4/3T/14). The support is greatly appreciated.

References

  1. 1.
    Poinssot C, Bourg S, Ouvrier N, Combernoux N, Rostaing C, Vargas-Gonzalez M, Bruno J (2014) Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles. Energy 69:199–211CrossRefGoogle Scholar
  2. 2.
    Sasaki Y, Sugo Y, Kitatsuji Y, Kirishima A, Kimura T, Choppin GR (2007) Complexation and back extraction of various metals by water-soluble diglycolamide. Anal Sci 23(6):727–731CrossRefGoogle Scholar
  3. 3.
    Lumetta GJ, Gelis AV, Carter JC, Niver CM, Smoot MR (2014) The actinide-lanthanide separation concept. Solv Extr Ion Exch 32(4):333–347CrossRefGoogle Scholar
  4. 4.
    Rostaing C, Poinssot C, Warin D, Baron P, Lorraina B (2012) Development and validation of the EXAm separation process for single Am recycling. Proc Chem 7:367–373CrossRefGoogle Scholar
  5. 5.
    Wilden A, Mincher BJ, Mezyk SP, Twight L, Rosciolo-Johnson KM, Zarzana CA, Case ME, Hupert M, Stärk A, Modolo G (2018) Radiolytic and hydrolytic degradation of the hydrophilic diglycolamides. Solv Extr Ion Exch 36(4):347–359CrossRefGoogle Scholar
  6. 6.
    Koubský T, Fojtíková J, Kalvoda L (2017) Radical degradation stability of ether linkage in N,N,N′,N′-tetraoctyldiglycolamide and related organic extractants: a density functional study. Prog Nucl Energy 94:208–215CrossRefGoogle Scholar
  7. 7.
    Ikeda H, Suzuki A (1998) Radiolysis of n-dodecane and its physical property change based on the dose in one pass through a reference HA column. J Nucl Sci Technol 35(10):697–704CrossRefGoogle Scholar
  8. 8.
    Galán H, Núňez A, Espartero AG, Sedano R, Durana A, de Mendoza J (2012) Radiolytic stability of TODGA: characterization of degraded samples under different experimental conditions. Proc Chem 7:195–201CrossRefGoogle Scholar
  9. 9.
    Galán H, Zarzana CA, Wilden A, Núňez A, Schmidt H, Egberink RJ, Leoncini A, Cobos J, Verboom W, Modolo G, Groenewold GS, Mincher BJ (2015) Gamma-radiolytic stability of new methylated TODGA derivatives for minor actinide recycling. Dalton Trans 44(41):18049–18056CrossRefGoogle Scholar
  10. 10.
    Koubský T, Kalvoda L (2015) Application of ab-initio molecular electronic structure calculations of radiolytic and hydrolytic stabilities of prospective extractants. J Radioanal Nucl Chem 304(1):227–235CrossRefGoogle Scholar
  11. 11.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 09, revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  12. 12.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  13. 13.
    Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58(8):1200–1211CrossRefGoogle Scholar
  14. 14.
    Stephens P, Devlin F, Chabalowski C, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627CrossRefGoogle Scholar
  15. 15.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785CrossRefGoogle Scholar
  16. 16.
    Glendening E, Badenhoop J, Reed A, Carpenter J, Bohmann J, Morales C, Landis C, Weinhold F (2013) Natural bond orbital analysis program: Nbo 6.0. Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar
  17. 17.
    Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508–517CrossRefGoogle Scholar
  18. 18.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113(18):7756–7764CrossRefGoogle Scholar
  19. 19.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44(2):129–138CrossRefGoogle Scholar
  20. 20.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094CrossRefGoogle Scholar
  21. 21.
    Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2(5):799–805CrossRefGoogle Scholar
  22. 22.
    Delley B (2006) The conductor-like screening model for polymers and surfaces. Mol Simul 32(2):117–123CrossRefGoogle Scholar
  23. 23.
    Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Yang W, Parr G (1985) Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci 82(20):6723–6726CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Czech Technical University in PraguePrague 2Czech Republic

Personalised recommendations