Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 2, pp 1099–1107 | Cite as

Study on the influence of temperature and humidity on radon exhalation from a radon-containing solution

  • Ju Zhou
  • Dexin Ding
  • Jiang Ye
Article
  • 37 Downloads

Abstract

The radon exhalation rate and transfer radon velocity between liquid and gas under different temperature and humidity conditions are investigated. The fitting formulas of radon exhalation rate and temperature and humidity are exponential functions, and each exponent is a 2nd-order polynomial. The fitting formula of transfer radon velocity and temperature is Boltzmann function, and the velocity tends to be stable gradually at 25 °C. The fitting formula of transfer radon velocity and humidity is exponential function whose exponent is a 2nd order polynomial, and the velocity increases at first when the humidity was 0.75, then decreases with increasing humidity.

Keywords

Radon-containing solution Radon exhalation rate Transfer radon velocity Temperature Humidity 

Notes

Acknowledgements

The authors thank Mr. Yongjun Yan for his advice in preparing the manuscript, especially regarding data processing.

References

  1. 1.
    Neretnieks I (2013) Some aspects of release and transport of gases in deep granitic rocks: possible implications for nuclear waste repositories. Hydrogeol J 21(8):1701–1716CrossRefGoogle Scholar
  2. 2.
    Moldrup P, Olesen T, Komatsu T, Schjonning P, Rolston DE (2001) The Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci Soc Am J 65(3):613–623CrossRefGoogle Scholar
  3. 3.
    Manoharan S, Sudhakaran S, Williamson TH (2011) Air-gas exchange reevaluated: clinically important results of a computer simulation. Invest Ophthalmic Vis Sci 52(11):8262–8263CrossRefGoogle Scholar
  4. 4.
    Ongori JN, Lindsay R, Mvelase MJ (2015) Radon transfer velocity at the water–air interface. Appl Radiat Isotopes 105:144–149.  https://doi.org/10.1016/j.apradiso.2015.07.058 CrossRefGoogle Scholar
  5. 5.
    Luis SQP, Carlos SF, Ismael FM, Jose LGV, Alberto GD (2013) The use of radon as tracer in environmental sciences. Acta Geophys 61(4):848–858CrossRefGoogle Scholar
  6. 6.
    Papp B, Deák F, Horváth Á, Kiss Á, Rajnai G, Cs S (2008) A new method for the determination of geophysical parameters by radon concentration measurements in bore-hole. J Environ Radioact 99(11):1731–1735CrossRefGoogle Scholar
  7. 7.
    Waska H, Kim S, Kim G, Peterson RN, Burnett WC (2008) An efficient and simple method for measuring 226Ra using the scintillation cell in a delayed coincidence counting system (RaDeCC). J Environ Radioact 99(12):1859–1862CrossRefGoogle Scholar
  8. 8.
    Burnett WC, Peterson RN, Santos IR, Hicks RW (2010) Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams. J Hydrol 380(3–4):298–304CrossRefGoogle Scholar
  9. 9.
    Savoy L, Surbeck H, Hunkeler D (2011) Radon and CO2 as natural tracers to investigate the recharge dynamics of karst aquifers. J Hydrol 406(3):148–157CrossRefGoogle Scholar
  10. 10.
    Stellato L, Terrasi F, Marzaioli F, Belli M, Sansone U, Celico F (2013) Is 222Rn a suitable tracer of stream-groundwater interactions? A case study from Italy. Appl Geochem 32(2013):108–117CrossRefGoogle Scholar
  11. 11.
    Nasab SMM, Negarestani A, Mohammadi S (2011) Modeling of the radon exhalation from water to air by a hybrid electrical circuit. J Radioannal Nucl Chem 288(3):813–818CrossRefGoogle Scholar
  12. 12.
    Schmidt A, Schlueter M, Melles M, Schubert M (2008) Continuous and discrete on-site detection of radon-222 in ground-and surface waters by means of an extraction module. Appl Radiat Isotopes 66(12):1939–1944CrossRefGoogle Scholar
  13. 13.
    Sahoo BK, Mayya YS, Sapra BK (2010) Radon exhalation studies in an Indian uranium tailings pile. Radiat Meas 45(2):237–241CrossRefGoogle Scholar
  14. 14.
    Kumar A, Chauhan RP, Joshi M (2014) Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements. J Environ Radioact 127(2):50–55CrossRefGoogle Scholar
  15. 15.
    Sundar SB, Chitra N, Vijayalakshmi I, Danalakshmi B, Chandrasekaran S, Jose MT, Venkatraman B (2015) Soil radioactivity measurements and estimation of radon/thoron exhalation rate in soil samples from Kalpakkam residential complex. Radiat Prot Dosim 164(4):569–574CrossRefGoogle Scholar
  16. 16.
    Schubert M, Schulz H (2002) Diurnal radon variations in the upper soil layers and at the soil-air interface related to meteorological parameters. Health Phys 83(1):91–96CrossRefGoogle Scholar
  17. 17.
    Iakovleva VS, Ryzhakova NK (2003) Spatial and temporal varitions of radon concentration in soil air. Radiat Meas 36(1–6):385–388CrossRefGoogle Scholar
  18. 18.
    Sundal AV, Valen V, Soldal O, Strand T (2008) The influence of meteorological parameters on soil radon levels in permeable glacial sediments. Sci Total Environ 389(2–3):418–428CrossRefGoogle Scholar
  19. 19.
    Smetanová I, Holý K, Müllerová M, Polášková A (2010) The effect of meteorological parameters on radon concentration in borehole air and water. J Radioannal Nucl Chem 283(1):101–109CrossRefGoogle Scholar
  20. 20.
    Kasztovszky Z, Sajó-Bohus L, Fazekas B (2000) Parameric changes of radon (222Rn) concentration in ground water in Northeastern Hungary. J Environ Radioact 49(2):171–180CrossRefGoogle Scholar
  21. 21.
    Wanninkhof R, Asher WE, Ho DT, Sweeney C, Mcgillis WR (2009) Advances in quantifying air-sea gas exchange and environmental forcing. Annu Rev Mar Sci 1(1):213–244CrossRefGoogle Scholar
  22. 22.
    Chanyotha S, Kranrod C, Burnett WC (2014) Assessing diffusive fluxes and pore water radon activities via a single automated experiment. J Radioannal Nucl Chem 301(2):581–588CrossRefGoogle Scholar
  23. 23.
    Monnin MM, Seidel JL (1997) Physical models related to radon emission in connection with dynamic manifestations in the upper terrestrial crust: a review. Radiat Meas 28(97):703–712CrossRefGoogle Scholar
  24. 24.
    Schubert M, Paschke A, Lieberman E, Burnett WC (2012) Air-water partitioning of 222Rn and its dependence on water temperature and salinity. Environ Sci Technol 46(7):3905–3911CrossRefGoogle Scholar
  25. 25.
    Rogers VC, Nielson KK (1991) Correlations for predicting air permeabilities and radon-222 diffusion coefficients of soils. Health Phys 61(2):225–230CrossRefGoogle Scholar
  26. 26.
    Rogers VC, Nielson KK (1991) Multiphase radon generation and transport in porous materials. Health Phys 60(6):807–815CrossRefGoogle Scholar
  27. 27.
    Dulaiova H, Burnett WC (2006) Radon loss across the water-air interface (Gulf of Thailand) estimated experimentally from 222Rn–224Ra. Geophys Res Lett 33(5):L05606CrossRefGoogle Scholar
  28. 28.
    Weigel F (1978) Radon Chem Ztg 102:287–299Google Scholar
  29. 29.
    Lee JM, Kim G (2006) A simple and rapid method for analyzing radon in coastal and ground waters using a radon-in-air monitor. J Environ Radioact 89(3):219–228CrossRefGoogle Scholar
  30. 30.
    He ZZ, Xiao DT, Zhao GZ, Qiu SK, Shan J, Fu Y, OuYang Q, Wu XJ (2013) theoretical calculation and experimental determination of iterative correction factor for continuous measurement radon method. At Energy Sci Technol (China) 6(47):1040–1043Google Scholar
  31. 31.
    The Commission of Science, Technology and Industry for National Defense of the PRC (2001) EJ/T 1133-2001 Regulations for measurement of radon in water. China Nuclear Industry Standard: 3–8Google Scholar
  32. 32.
    Saâdi Z (2014) On the air-filled effective porosity parameter of rogers and nielson’s (1991) bulk radon diffusion coefficient in unsaturated soils. Health Phys 106(5):598–607CrossRefGoogle Scholar
  33. 33.
    Calugaru DG, Crolet JM (2002) Identification of radon transfer velocity coefficient between liquid and gaseous phases. Cr Mec 330(5):377–382CrossRefGoogle Scholar
  34. 34.
    Baskaran M (2016) Radon: a tracer for geological, geophysical and geochemical studies. Geochemistry. Springer, Berlin.  https://doi.org/10.1007/978-3-319-21329-3 CrossRefGoogle Scholar
  35. 35.
    Schubert M, Paschke A, Bednorz D, Burkin W, Stieglitz T (2012) Kinetics of the water/air phase transition of radon and its implication on detection of radon-in-water concentrations: practical assessment of different on-site radon extraction methods. Environ Sci Technol 46(16):8945–8951CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Environment Protection and Safety EngineeringUniversity of South ChinaHengyangChina
  2. 2.Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and HydrometallurgyUniversity of South ChinaHengyangChina
  3. 3.School of Mechanical EngineeringUniversity of South ChinaHengyangChina

Personalised recommendations