Advertisement

Sorption of Sr and Cs onto Czech natural bentonite: experiments and modelling

  • Lucie Baborová
  • Dušan Vopálka
  • Radek Červinka
Article

Abstract

Within the development of deep geologic repository in the Czech Republic, the local Mg/Ca bentonite has been tested with the aim to assess its sorption qualities with regard to cations of interest for the performance assessment (PA) of the repository. The data of Sr and Cs sorption obtained by batch method were evaluated with the use of ion exchange and surface complexation models. The selectivity coefficients of exchangeable cations were determined, and the selectivity coefficient of Sr was set to be the same as for Ca. The selectivity coefficient of Cs was chosen in accordance with literature and the concentration and stability constant of the surface complex was fitted. One-site ion exchange model for Sr sorption was able to predict the observed Kd dependence on solid-to-liquid ratio. Two-site ion exchange/surface complexation model for Cs sorption simulated the dual sorption mechanism of Cs adequately, thus the predictive ability was lower due to the fact that the protonation of edge sites or competition with Na ion was not taken into account.

Keywords

Bentonite Ion exchange Surface complexation 

Notes

Acknowledgements

This work is partially a result of Radioactive Waste Repository Authority Project “Research Support for Safety Evaluation of Deep Geological Repository” and partially a result of Grant No. SGS16/250/OHK4/3T/14 provided by the Grant Agency of the Czech Technical University in Prague.

References

  1. 1.
    Liang TJ, Hsu CN, Liou DC (1993) Modified Freundlich sorption of cesium and strontium on Wyoming bentonite. Appl Radiat Isot 44:9CrossRefGoogle Scholar
  2. 2.
    Khan SA, Riaz-ur-Rehman, Khan MA (1996) Sorption of strontium on bentonite. Waste Manag 15:8Google Scholar
  3. 3.
    Tsai S, Ouyang S, Hsu C (2001) Sorption and diffusion behavior of Cs and Sr on Jih-Hsing bentonite. Appl Radiat Isot 54:209–215CrossRefGoogle Scholar
  4. 4.
    Abdel-Karim AAM, Zaki AA, Elwan W, El-Naggar MR, Gouda MM (2016) Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Appl Clay Sci.  https://doi.org/10.1016/j.clay.2016.07.005 CrossRefGoogle Scholar
  5. 5.
    Galamboš M, Krajňák A, Rosskopfová O, Viglašová E, Adamcová R, Rajec P (2013) Adsorption equilibrium and kinetic studies of strontium on Mg-bentonite, Fe-bentonite and illite/smectite. J Radioanal Nucl Chem 298:2CrossRefGoogle Scholar
  6. 6.
    Vejsada J, Hradil D, Řanda Z, Jelínek E, Štulík K (2005) Adsorption of cesium on Czech smectite-rich clays—a comparative study. Appl Clay Sci 30:1CrossRefGoogle Scholar
  7. 7.
    Abdel Rahman RO, Zin El Abidin DHA, Abou-Shady H (2013) Assessment of strontium immobilization in cement-bentonite matrices. Chem Eng J.  https://doi.org/10.1016/j.cej.2013.05.034 CrossRefGoogle Scholar
  8. 8.
    Aldaba D, García-Gutiérrez M, Rigol A, Vidal M (2010) Comparison of laboratory methodologies for evaluating radiostrontium diffusion in soils: planar-source versus half-cell methods. Sci Total Environ.  https://doi.org/10.1016/j.scitotenv.2010.05.035 CrossRefPubMedGoogle Scholar
  9. 9.
    Aldaba D, Rigol A, Vidal M (2010) Diffusion experiments for estimating radiocesium and radiostrontium sorption in unsaturated soils from Spain: comparison with batch sorption data. J Hazard Mater 181:1–3CrossRefGoogle Scholar
  10. 10.
    Van Loon LR, Baeyens B, Bradbury M (2005) Diffusion and retention of sodium and strontium in Opalinus clay: comparison of sorption data from diffusion and batch sorption measurements, and geochemical calculations. Appl Geochem 20:12Google Scholar
  11. 11.
    Shannon R (1976) Revised effective ionic radii and systematicstudiesofinteratomicdistances in halides and chalcogenides. Acta Cryst A32:751–767CrossRefGoogle Scholar
  12. 12.
    Missana T (2007) Adsorption of bivalent ions (Ca(II), Sr(II) and Co(II)) onto FEBEX bentonite. Phys Chem Earth 32:559–567CrossRefGoogle Scholar
  13. 13.
    Yu J, Neretnieks I (1997) Diffusion and sorption properties of radionuclides in compacted bentonite. SKB technical report 97-12Google Scholar
  14. 14.
    Rumynin VG, Mironova AV, Pankina EB, Chernomorova NV, Mysik SG (2004) A study of diffusion and sorption properties of cambrian clays using radioactive tracers (36Cl and 90Sr). Radiochemistry 46:4CrossRefGoogle Scholar
  15. 15.
    Cole T, Bidoglio G, Soupioni M, O’Gorman M, Gibson N (2000) Diffusion mechanisms of multiple strontium species in clay. Geochim Cosmochim Acta 64:3CrossRefGoogle Scholar
  16. 16.
    Bostick BC, Vairavamurthy MA, Karthikeyan KG, Chorover J (2002) Cesium adsorption on clay minerals: an EXAFS spectroscopic investigation. Environ Sci Technol 36:12CrossRefGoogle Scholar
  17. 17.
    Fuller AJ, Shaw S, Peacock CL, Trivedi D, Small JS, Abrahamsen LG, Burke IT (2014) Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Appl Geochem.  https://doi.org/10.1016/j.apgeochem.2013.10.017 CrossRefGoogle Scholar
  18. 18.
    Pusch R, Karnland O (1996) Physico/chemical stability of smectite clays. Eng Geol 41(1–4):73–85CrossRefGoogle Scholar
  19. 19.
    Vopálka D, Gondolli J, Drtinová B, Klika Z (2015) Cesium uptake by Ca/Mg bentonite: evaluation of sorption experiments by a multicomponent two-site ion-exchange model. J Radioanal Nucl Chem 304:1CrossRefGoogle Scholar
  20. 20.
    Missana T, Benedicto A, García-Gutiérrez M, Alonso U (2014) Modeling cesium retention onto Na-, K- and Ca-smectite: effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients. Geochim Cosmochim Acta 128:266–277CrossRefGoogle Scholar
  21. 21.
    Siroux B, Beaucaire C, Tabarant M, Benedetti MF, Reiller PE (2017) Adsorption of strontium and caesium onto an Na-MX80 bentonite: experiments and building of a coherent thermodynamic modelling. Appl Geochem.  https://doi.org/10.1016/j.apgeochem.2017.10.022 CrossRefGoogle Scholar
  22. 22.
    Klika Z, Kraus L, Vopálka D (2007) Cesium uptake from aqueous solutions by bentonite: a comparison of multicomponent sorption with ion-exchange models. Langmuir 23:3CrossRefGoogle Scholar
  23. 23.
    Wissocq A, Beaucaire C, Latrille C (2018) Appl Chem.  https://doi.org/10.1016/j.apgeochem.2017.12.010 CrossRefGoogle Scholar
  24. 24.
    Garrido V, Martinez M, De Pablo J, Eriksen TE, Duro L, Bruno J (1998) Sorption mechanism of Sr(ll) in natural bentonite. Goldschm Conf Toulouse 62:502–503Google Scholar
  25. 25.
    Missana T, Garcia-Gutierrez M, Alonso U (2008) Sorption of strontium onto illite/smectite mixed clays. Phys Chem Earth 33:S156–S162CrossRefGoogle Scholar
  26. 26.
    Kroupová H, Štamberg K (2005) Experimental study and mathematical modeling of Cs(I) and Sr(II) sorption on bentonite as barrier material in deep geological repository. Acta Geodyn Geomater 2:138Google Scholar
  27. 27.
    Cherif MA, Martin-Garin A, Gérard F, Bildstein O (2017) A robust and parsimonious model for caesium sorption on clay minerals and natural clay materials. Appl Geochem.  https://doi.org/10.1016/j.apgeochem.2017.10.017 CrossRefGoogle Scholar
  28. 28.
    Červinka R, Gondolli J (2015) Modelování pórové vody kompaktovaného bentonitu BaM.ÚJV Řež a. s. Report no. 14407Google Scholar
  29. 29.
    Carter DL, Mortland MM, Kemper WD (1986) Specific surface. In: Klute A (ed) Methods of soil analysis, part 1. Physical and mineralogical methods, chapter 16, 2nd edn. American Society of Agronomy–Soil Science Society of America, Madison, pp 413–423Google Scholar
  30. 30.
    Meier LP, Kahr G (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clays Clay Miner 47:3CrossRefGoogle Scholar
  31. 31.
    Karnland O, Birgersson M, Hedström M (2011) Selectivity coefficient for Ca/Na ion exchange in highly compacted bentonite. Phys Chem Earth.  https://doi.org/10.1016/j.pce.2011.07.023 CrossRefGoogle Scholar
  32. 32.
    Gaines GL, Thomas HC (1953) Adsorption studies on clay minerals(II). A formulation of the thermodynamic of exchange adsorption. J Chem Phys 21:714–718CrossRefGoogle Scholar
  33. 33.
    Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, chapter A43, p 503Google Scholar
  34. 34.
    Bradbury M, Baeyens B (2004) Near field sorption data bases for compacted MX-80 bentonite for performance assessment of a high-level radioactive waste repository in Opalinus clay host rock. PSI Bericht Nr. 03-07Google Scholar
  35. 35.
    Ochs M, Lothenbach B, Wanner H, Sato H, Yui M (2001) An integrated sorption–diffusion model for the calculation of consistent distribution and diffusion coefficients in compacted bentonite. J Contam Hydrol 47(2–4):283–296CrossRefGoogle Scholar
  36. 36.
    Wanner H, Albinsson Y, Wieland E (1996) A thermodynamic surface model for cesium sorption on bentonite. Anal Bioanal Chem 354(5–6):763–769CrossRefGoogle Scholar
  37. 37.
    Galamboš M, Kufčáková J, Rajec P (2009) Sorption of strontium on Slovak bentonites. J Radioanal Nucl Chem 281:3CrossRefGoogle Scholar
  38. 38.
    Bradbury MH, Baeyens B (2002) Porewater chemistry in compacted re-saturated MX-80 bentonite: physico-chemical characterisation and geochemical modelling. J Contam Hydrol 61:02Google Scholar
  39. 39.
    Soler JM, Wersin P, Leupin OX (2013) Modeling of Cs+ diffusion and retention in the DI-A2 experiment (Mont Terri): uncertainties in sorption and diffusion parameters. Appl Geochem.  https://doi.org/10.1016/j.apgeochem.2013.02.012 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePragueCzech Republic
  2. 2.Division of Radioactive Waste and Decommissioning, Fuel Cycle Chemistry DepartmentÚJV Řež, a. s.Husinec-ŘežCzech Republic

Personalised recommendations