Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 3, pp 2039–2047 | Cite as

Micelle-mediated extraction and neutron activation determination of nanogram levels of vanadium in seaweeds

  • Y. Serfor-Armah
  • D. Carboo
  • R. K. Akuamoah
  • A. Chatt


A simple one-step micelle-mediated extraction, commonly called cloud point extraction, method was developed for the preconcentration of vanadium in red, brown and green seaweeds. The recovery of vanadium under the optimized conditions of pH 3.7, [PAN/TAN] = 1×10−4 M, [PONPE-20] = 0.1% (m/v), ionic strength = 0.05 M KNO3, and a temperature of 41 °C was > 99%. Vanadium was assayed by neutron activation analysis using the Dalhousie University SLOWPOKE-2 reactor facility. The detection limits for vanadium varied from 0.6 to 3.9 µg kg−1 depending on the sample. The method was validated using certified reference materials. Mass fractions of vanadium in seaweeds ranged from 0.009 to 55.4 mg kg−1.


Cloud point extraction Neutron activation Vanadium Seaweeds 



The authors would like to acknowledge with thanks the (1) award of a Fellowship by the International Atomic Energy Agency (IAEA) to Yaw Serfor-Armah for a sandwich Ph.D. program at Dalhousie University, (2) award of Discovery and Infrastructure Grants to A. Chatt by the Natural Sciences and Engineering Research Council of Canada, and (3) cooperation of the Dalhousie University SLOWPOKE-2 Reactor (DUSR) facility in carrying out the project. This paper was presented at the Eleventh International Conference on Methods and Applications of Radioanalytical Chemistry (MARC-XI) held at Kailua-Kona, Hawai’i, USA, during 2018 April 08–13.  


  1. 1.
    Harland BF, Harden-Williams BA (1994) J Am Diet Assoc 94:891–894CrossRefGoogle Scholar
  2. 2.
    Hopkins LL, Mohr HE Jr (1971) The biological essentiality of vanadium, newer trace elements in nutrition. Wiley, New YorkGoogle Scholar
  3. 3.
    Nielson FH (1980) In: Martell AE (ed) Inorganic chemistry in biology and medicine. American Chemical Society, Washington DC, pp 32–35Google Scholar
  4. 4.
    Winter JM, Moore BS (2009) J Biol Chem 28:284Google Scholar
  5. 5.
    Sarkar AR, Mandal S (2000) Met Based Drugs 7(3):157CrossRefGoogle Scholar
  6. 6.
    Sakurai H (2008) Yakugaku Zasshi 128(3):317CrossRefGoogle Scholar
  7. 7.
    Ghosh R, Banik S (2016) Dual effects of vanadium: toxicity analysis in developing therapeutic lead-ups. In: Bagshi D, Swaroop A (eds) Food toxicology. CRC Press, Boca Raton, pp 337–354CrossRefGoogle Scholar
  8. 8.
    Gruzewska K, Michno A, Pawelczyk T, Bielarczyk H (2014) J Physiol Pharmacol 65:603–611PubMedGoogle Scholar
  9. 9.
    Rehder D (2013) Vanadium: its role for humans. In: Sigel RKO, Sigel A, Sigel H (eds) Interrelations between essential metal ions and human diseases. Springer, Berlin, pp 139–169CrossRefGoogle Scholar
  10. 10.
    Fukushima M, Chatt A (2012) J Radioanal Nucl Chem 294:471–478. CrossRefGoogle Scholar
  11. 11.
    Taylor SW, Kammeree B, Bayer E (1997) Chem Rev 97:333CrossRefGoogle Scholar
  12. 12.
    Khristoforva NK, Kozhenkova SI (2002) Ocean Polar Res 24:325CrossRefGoogle Scholar
  13. 13.
    Bryan GW (1976) Heavy metal contamination in the sea, in marine pollution. Academic Press, London, p 185Google Scholar
  14. 14.
    Serfor-Armah Y (2006) Studies of seaweeds as indicators of toxic element pollution in Ghana using neutron activation analysis. Ph.D. Thesis, Department of Chemistry, University of Ghana, Accra-Legon, GhanaGoogle Scholar
  15. 15.
    Buláneka R, Kaluzová A, Setnicka M, Zukal A, Cicmanec P, Mayerová J (2012) Catal Today 179:149–158. CrossRefGoogle Scholar
  16. 16.
    Tamilarasu S, Velraj G, Ray DK, Acharya R (2016) J Radioanal Nucl Chem 310:363–370. CrossRefGoogle Scholar
  17. 17.
    Nyarko BJB, Akaho EHK, Fletcher JJ, Zwicker B, Chatt A (2006) J Radioanal Nucl Chem 270:243–248CrossRefGoogle Scholar
  18. 18.
    Fukushima M, Suzuki H, Saito K, Chatt A (2009) J Radioanal Nucl Chem 282:85–89CrossRefGoogle Scholar
  19. 19.
    Kučera J, Bennett JW, Oflaz R, Paul RL, De Nadai Fernandes EA, Kubešová M, Bacchi MA, Stopic AJ, Sturgeon RE, Grinberg P (2015) Anal Chem 87:3699–3705. CrossRefPubMedGoogle Scholar
  20. 20.
    Bitewlign TA, Chaubey AK, Beyene GA, Melikegnaw TH, Mizera J, Kamenık J, Krausova I, Kucera J (2017) J Radioanal Nucl Chem 311:2047–2059. CrossRefGoogle Scholar
  21. 21.
    Kamenık J, Dragounova K, Kucera J, Bryknar Z, Trepakov VA, Strunga V (2017) J Radioanal Nucl Chem 311:1333–1338. CrossRefGoogle Scholar
  22. 22.
    Juichang R, Freedman B, Coles C, Zwicker B, Holzbecher J, Chatt A (1995) J Air Waste Manag Assoc 45:461–464CrossRefGoogle Scholar
  23. 23.
    Seo D, Vasconcellos MBA, Catharino MGM, Moreira EG, de Sousa ECPM, Saiki M (2013) J Radioanal Nucl Chem 296:459–463. CrossRefGoogle Scholar
  24. 24.
    Alsabbagh A, Khalayleh L, Dbissi M, Landsberger S (2017) J Radioanal Nucl Chem 314:141–147. CrossRefGoogle Scholar
  25. 25.
    Mildenberger F, Mauerhofer E (2017) J Radioanal Nucl Chem 311:917–927. CrossRefGoogle Scholar
  26. 26.
    Ho VD, Ho MD, Ha TV, Tran QT, Cao DV (2018) J Radioanal Nucl Chem 315:703–719. CrossRefGoogle Scholar
  27. 27.
    Acharya R, Swain KK, Shinde AD, Bhamra NS, Chakrabarty K, Karhadkar CG, Singh T, Rana YS, Pujari PK, Shukla DK, Reddy JAVR (2014) J Radioanal Nucl Chem 302:1525–1530CrossRefGoogle Scholar
  28. 28.
    Zhang W (1997) Ph.D. Thesis, Dalhousie University, Halifax, NS, CanadaGoogle Scholar
  29. 29.
    Zhang WH, Chatt A (2000) Trans Am Nucl Soc 83:486–487Google Scholar
  30. 30.
    Nyarko BJB, Akaho EHK, Fletcher JJ, Chatt A (2008) Appl Rad Isot 66:1067–1072CrossRefGoogle Scholar
  31. 31.
    Acharya R, Chatt A (2009) J Radioanal Nucl Chem 282:991–996CrossRefGoogle Scholar
  32. 32.
    Zhang W, Chatt A (2009) J Radioanal Nucl Chem 282:139–143CrossRefGoogle Scholar
  33. 33.
    Isaac-Olive K, Chatt A (2012) J Radioanal Nucl Chem 294:479–486CrossRefGoogle Scholar
  34. 34.
    Zhang W, Chatt A (2013) J Radioanal Nucl Chem 296:495–501CrossRefGoogle Scholar
  35. 35.
    Fukushima M, Chatt A (2013) J Radioanal Nucl Chem 296:563–571Google Scholar
  36. 36.
    Zhang W, Chatt A (2014) J Radioanal Nucl Chem 299:1777–1789. CrossRefGoogle Scholar
  37. 37.
    Zhang W, Chatt A (2018) J Radioanal Nucl Chem. CrossRefGoogle Scholar
  38. 38.
    Isaac-Olive K, Kyaw TT, Chatt A (2018) J Radioanal Nucl Chem. CrossRefGoogle Scholar
  39. 39.
    Damsgaard E, Heydorn K, Rietz B (1973) Symposium on nuclear activation techniques in life sciences (CONF 720425), Bled, Yugoslavia, IAEA (Vienna), pp. 119–128Google Scholar
  40. 40.
    Orvini E, Gallorini M (1982) J Radioanal Chem 71:75–95CrossRefGoogle Scholar
  41. 41.
    Byrne AR, Kucera J (1991) Fresenius J Anal Chem 340:48–52CrossRefGoogle Scholar
  42. 42.
    Becker DA, Anderson DL, Lindstrom RM, Greenberg RR, Garrity KM, Mackey EA (1994) J Radioanal Nucl Chem 179:149–154CrossRefGoogle Scholar
  43. 43.
    Zeisler R, Tomlin BE, Murphy KE, Kucera J (2009) J Radioanal Nucl Chem 282:69–74. CrossRefGoogle Scholar
  44. 44.
    Kucera J, Kamenık J, Povinec PP (2017) J Radioanal Nucl Chem 311:1299–1307. CrossRefGoogle Scholar
  45. 45.
    Blotcky AJ, Falcone C, Medina VA, Rack EP (1979) Anal Chem 51:178–182CrossRefGoogle Scholar
  46. 46.
    Milley JE, Chatt A (1987) J Radioanal Nucl Chem 110:345–363CrossRefGoogle Scholar
  47. 47.
    Kulathilake AI, Chatt A (1992) Trans Am Nucl Soc 65:172–173Google Scholar
  48. 48.
    Jayawickreme CK, Chatt A (1987) J Radioanal Nucl Chem 110:583–593CrossRefGoogle Scholar
  49. 49.
    Beazley PI, Rao RR, Chat A (1994) J Radioanal Nucl Chem 179:267–276CrossRefGoogle Scholar
  50. 50.
    Smolinski T, Wawszczak D, Deptula A, Lada W, Olczak T, Rogowski M, Pyszynska M, Chmielewski AG (2017) J Radioanal Nucl Chem 314:69–75. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pérez-Gramatges A (1999), Simultaneous preconcentration of trace metals by cloud point extraction with 1-(2-pyridylazo)-2-naphthol and determination by neutron activation analysis. Ph.D. Thesis, Department of Chemistry, Dalhousie University, Halifax, NS, CanadaGoogle Scholar
  52. 52.
    Yazdi AS (2011) Trends Anal Chem 30:918–929CrossRefGoogle Scholar
  53. 53.
    Bosch Ojeda C, Sánchez Rojas F (2012) Microchim Acta 177:1–21. CrossRefGoogle Scholar
  54. 54.
    Melnyk A, Namiesnik J, Wolska L (2015) Trends Anal Chem 71:282–292. CrossRefGoogle Scholar
  55. 55.
    Perez-Gramatges A, Chatt A (2006) J Radioanal Nucl Chem 269:491–497CrossRefGoogle Scholar
  56. 56.
    Serfor-Armah Y, Chatt A, Carboo D, Akuamoah RK (2008) J Appl Sci Technol (JAST) 13:48–54Google Scholar
  57. 57.
    Perez-Gramatges A, Chatt A (2012) J Radioanal Nucl Chem 294:163–170. CrossRefGoogle Scholar
  58. 58.
    Stefanova-Bahchevanska T, Milcheva N, Zaruba S, Andruch V, Delchev V, Simitchiev K, Gavazov K (2017) J Mol Liquids 248:135–142. CrossRefGoogle Scholar
  59. 59.
    Gürkan R, Korkmaz S, Altunay N (2016) Talanta 155:38–46. CrossRefPubMedGoogle Scholar
  60. 60.
    López-García I, Marín-Hernández JJ, Hernández-Córdoba M (2018) Spectrochim Acta, Part B 143:42–47. CrossRefGoogle Scholar
  61. 61.
    Souza VS, Teixeira LSG, Bezerra MA (2016) Microchem J 129:318–324. CrossRefGoogle Scholar
  62. 62.
    Wuilloud GM, de Wuilloud JCA, Wuilloud RG, Silva MF, Olsina RA, Martinez LD (2002) Talanta 58:619–627CrossRefGoogle Scholar
  63. 63.
    Madrakian T, Afkhami A, Siri R, Mohammadnejad M (2011) Food Chem 127:769–773. CrossRefPubMedGoogle Scholar
  64. 64.
    Labrecque C, Lebed PJ, Lariviere D (2016) J Environ Radioact 155–156:15–22. CrossRefPubMedGoogle Scholar
  65. 65.
    Serfor-Armah Y, Carboo D, Akuamoah RK, Chatt A (2006) J Radioanal Nucl Chem 269:711–718CrossRefGoogle Scholar
  66. 66.
    Rao RR, Chatt A (1993) Analyst 118:1247–1251CrossRefGoogle Scholar
  67. 67.
    Freiser BS, Freiser H (1970) Talanta 17:540–542CrossRefGoogle Scholar
  68. 68.
    Paleologos EK, Giokas DL, Karayannis MI (2005) Trends Anal Chem 24:426–436CrossRefGoogle Scholar
  69. 69.
    Akita S, Rovira M, Sastre AM, Takeuchi H (1998) Sep Sci Technol 33:2159–2177CrossRefGoogle Scholar
  70. 70.
    Chen X, Li G, Hu Z (1996) Mikrochim Acta 122:143–149CrossRefGoogle Scholar
  71. 71.
    Hancock RI (1984) Surfactants, Tadros TF (Ed) Academic Press Inc, p 297–299Google Scholar
  72. 72.
    Curie LA (1995) Pure Appl Chem 67:1699–1723CrossRefGoogle Scholar
  73. 73.
    Bezerra MA, Arruda MAZ, Ferreira SLC (2005) Appl Spectrosc Rev 40:269–299CrossRefGoogle Scholar
  74. 74.
    Vlachos V, Critchley AT, Bannatyne TE, von Holy A (1998) S Afr J Bot 64:233–237CrossRefGoogle Scholar
  75. 75.
    Vasques JA, Guerra N (1996) Hydrobiologia 326(327):327–333CrossRefGoogle Scholar
  76. 76.
    Sanchez-Rodriguez I, Huerta-Diaz MA, Choumiline E, Holguin-Quinones O, Zertuche-Gonzalez JA (2001) Environ Pollut 114:145–160CrossRefGoogle Scholar
  77. 77.
    Wang W-X, Dei RCH (1999) Mar Biol 135:11–23CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Trace Analysis Research Centre, Department of ChemistryDalhousie UniversityHalifaxCanada
  2. 2.School of Nuclear and Allied Sciences, College of Basic and Applied SciencesUniversity of GhanaAtomic-AccraGhana
  3. 3.Department of Chemistry, College of Basic and Applied SciencesUniversity of GhanaLegon-AccraGhana

Personalised recommendations