Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 2, pp 985–989 | Cite as

Accumulation of silver nanoparticles in mice tissues studied by neutron activation analysis

  • Inga ZinicovscaiaEmail author
  • Sergey S. Pavlov
  • Marina V. Frontasyeva
  • Alexandra L. Ivlieva
  • Elena N. Petritskaya
  • Dmitriy A. Rogatkin
  • Vyacheslav A. Demin


For estimation of toxicity of silver nanoparticles under long-term exposure for mammals and humans, the accumulation of silver in mice tissues (blood, liver, brain) during 2 and 4 months experiments was examined. Neutron activation analysis revealed silver in all examined tissues with its highest concentrations in liver followed by brain (including silver in blood vessels). The lowest concentration of silver was observed in blood samples. The mean specific mass content of silver which crossed the blood–brain barrier was 225 ± 99 ng (for male) and 395 ± 150 ng (for female) of the brain sample after 2 months of administration, 860 ± 200 ng (for male) and 880 ± 200 ng (for female) of brain sample after 4 months of administration. The obtained results are of great importance for nanotoxicological studies.


Silver nanoparticles Brain Liver Blood Accumulation Neutron activation analysis 


  1. 1.
    Yang L, Kuang H, Zhang W, Aguilar ZP, Wei H, Hengyi X (2017) Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, Park HM, Song NW, Shin BS, Marshak D, Lee KA, Ji E, Yu IJ (2013) Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Part Fibre Toxicol 10:36CrossRefGoogle Scholar
  3. 3.
    Park K, Park EJ, Chun IK, Choi K, Lee SH, Yoon J, Lee BC (2011) Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res 34:153–158CrossRefGoogle Scholar
  4. 4.
    Charehsaz M, Hougaard KS, Sipahi H, Ekici AI, Kaspar Ç, Culha M, Bucurgat ÜÜ, Aydin A (2016) Effects of developmental exposure to silver in ionic and nanoparticle form: a study in rats. DARU 24:24CrossRefGoogle Scholar
  5. 5.
    Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, Urayama A, Vergara L, Kogan MJ, Soto C (2010) Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 393:649–655CrossRefGoogle Scholar
  6. 6.
    Recordati C, De Maglie M, Bianchessi S, Argentiere S, Cella C, Mattiello S, Cubadda F, Aureli F, D’Amato M, Raggi A, Lenardi C, Milani P, Scanziani E (2016) Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol 13:12CrossRefGoogle Scholar
  7. 7.
    Perez-Jordan MY, Soldevila J, Salvador A, Pastor A, de la Guardia M (1998) Inductively coupled plasma mass spectrometry analysis of wines. J Anal At Spectrom 13:33–39Google Scholar
  8. 8.
    De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919CrossRefGoogle Scholar
  9. 9.
    Frontasieva MV (2011) Neutron activation analysis in the life sciences. PEPAN 42:332–378. CrossRefGoogle Scholar
  10. 10.
    van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC, Hendriksen PJ, Marvin HJ, Peijnenburg AA, Bouwmeester H (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6:7427–7442CrossRefGoogle Scholar
  11. 11.
    Anonymous (1966) Order of the Ministry of Health of the USSR N 163 of March 10, 1966Google Scholar
  12. 12.
    Greenberg RR, Bode P, De Nadai Fernandes EA (2011) Neutron activation analysis: a primary method of measurement. Review. Spectrochim Acta Part B 66:193–241CrossRefGoogle Scholar
  13. 13.
    Pavlov SS, Dmitriev AYu, Frontasyeva MV (2016) Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia. J Radioanal Nucl Chem 309:27–38CrossRefGoogle Scholar
  14. 14.
    Jimenez-Lamana J, Laborda F, Bolea E, Abad-A´lvaro I, Castillo JR, Bianga J, He M, Bierla K, Mounicou S, Ouerdane L, Gaillet S, Rouanet JM, Szpunar J (2014) An insight into silver nanoparticles bioavailability in rats. Metallomics 6:2242–2249CrossRefGoogle Scholar
  15. 15.
    Antsiferova AA, Buzulukov YuP, Demin VA, Demin VF, Rogatkin DA, Petritskaya EN, Abaeva LF, Kashkarov PK (2015) Radiotracer methods and neutron activation analysis for the investigation of nanoparticle biokinetics in living organisms. Nanotechnol Russ 10:101–108CrossRefGoogle Scholar
  16. 16.
    Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Yuan F, Xi T (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9:4924–4932CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussian Federation
  2. 2.Horia Hulubei National Institute for R&D in Physics and Nuclear EngineeringBucharest, MagureleRomania
  3. 3.Moscow Regional Research and Clinical Institute named after M. F. VladimirskiyMoscowRussia
  4. 4.National Research Centre «Kurchatov Institute»MoscowRussian Federation

Personalised recommendations