Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 2, pp 1317–1324 | Cite as

Physiological and radio-induced modulations of low-weight globulins in distinct vascular compartments

  • Celso Vieira Lima
  • Tarcísio Passos Ribeiro de Campos
  • Carlos Julio Montano Valencia
  • Iassudara Garcia Almeida
Article
  • 20 Downloads

Abstract

The main goal was to investigate the profiles of molecular weight globulins lower than albumin in the electrophoresis system in function of the exposition time to gamma radiation. At 72 h post-irradiation, the globulin electrophoretic profiles bellow albumin showed significant radio-induced changes. In addition, the vascular system, specifically the inferior vena cava, kidney, spleen, jugular, hepatic, and pulmonary veins presented a physiological compartmental distribution of globulins. The findings pointed out the radio-induced alterations of the serum globulin concentrations as a late event, possibly related to a radio modulation of the genes’ expression.

Keywords

Serum protein Rats Radiation Globulin Electrophoresis 

Notes

Acknowledgements

The authors are thankful to the Laboratory of Gamma Irradiation—LIG from Centro de Desenvolvimento de Tecnologia Nuclear—CDTN, who kindly provided the irradiations. The authors are also thankful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), due to the financial aid from process 456719/2013-0 REBRAT-SUS, and the Fundação da Pesquisa do Estado Minas Gerais (FAPEMIG), Universal Process 18565 due to scholarships and DTI scholar and due to posdoc grant, and the Coordenação de Apoio aos Programas de Ensino Superior (CAPES) for a Ph.D. scholarship grant.

References

  1. 1.
    Pieper RP, Gatlin CL, Makusky AJ, Russo PS, Schatz CR, Miller SS, Su Q, McGrath AM, Estock MA, Parmar PP, Zhao M, Huang ZJ, Wang F, Esquer R, Blasco R, Anderson NL, Taylor J, Steiner S (2003) The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics 3(7):1345–1364CrossRefGoogle Scholar
  2. 2.
    Athernon MJ, Braceland M, Harvie J, Burchmore RJ, Eadie S, Eckersall PD, Morris FS (2013) Characterisation of the normal canine serum proteome using a novel eletrophoretic technique combined with mass spectrometry. Vet J 196:315–319CrossRefGoogle Scholar
  3. 3.
    Gordon AH (1995) Electrophoresis of proteins in polyacrilamide and starch gels. Elsevier, New YorkGoogle Scholar
  4. 4.
    Abbas AK, Lichtman AH, Pillai S (2012) Imunologia celular e molecular. Elsevier, Rio de JaneiroGoogle Scholar
  5. 5.
    Kaneko Y, Frizzera G, Shikano T, Kobayashi H, Maseki N, Sakurai M (1989) Chromosomal and immunophenotypic patterns in T cell acute lymphoblastic leukemia (T ALL) and lymphoblastic lymphoma (LBL). Leukemia 3(12):886–892PubMedGoogle Scholar
  6. 6.
    Stockham SL, Scott MA (2008) Fundamentals of veterinary clinical pathology, 2nd edn. Blackwell Publishing, Ames. ISBN 978-0-8138-0076-9Google Scholar
  7. 7.
    Paula O, Silva C, Brandão KMA, Pinto PVM, Faria RMD, Clementino CD, Lopes AF (2009) Multiple myeloma: clinical and laboratory characteristics in the diagnosis and prognostic study. Rev Bras Hematol Hemoter 31(2):63–68CrossRefGoogle Scholar
  8. 8.
    Alexsandro R, Fontana S, Kohn E, De Leo G (2005) Proteomic strategies and their application in cancer research. Tumori 91(6):447–455Google Scholar
  9. 9.
    Gruys E, Obwolo MJ, Tousaint MJM (1994) Diagnostic significance of the major acute phase proteins in veterinary clinical chemistry: a review. Vet Bull 64:1009–1018Google Scholar
  10. 10.
    Leszczynski D (2013) Radiation proteomics: the effects of ionizing and non-ionizing radiation on cells and tissues. Springer, BerlinCrossRefGoogle Scholar
  11. 11.
    Jung WW, Park S, Oh S, Khim JY, Lee J, Nam MH, Seo JB, Park SY, Jo E, Choi S, Zheng Z, Lee JY, Lee M, Lee E, Sul D (2009) Analysis of low molecular weight plasma proteins using ultrafiltration and large gel two-dimensional electrophoresis. Proteomics.  https://doi.org/10.1002/pmic.200800470 CrossRefPubMedGoogle Scholar
  12. 12.
    Solter PF, Walter EH, Hungerford LL, Siegel JP, St Denis SH, Dorner JL (1991) Haptoglobin and ceruloplasmin as determinants of inflammation in dogs. Am J Vet Res 52:1738–1742PubMedGoogle Scholar
  13. 13.
    Toledo JM, Siqueira SL, Campos TPR, Facão PL (2013) Phenotypic behavior of PBMC from irradiated dogs based on flow cytometry. J Biol Reg Homeost Agents 27(2):309–317Google Scholar
  14. 14.
    Hawk E, Volk RJ, Beyers TB (2014) Should CMS cover lung cancer screening for the fully informed patient? JAMA.  https://doi.org/10.1001/jama.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Toledo JM, Siqueira SL, Campos TPR, Facão PL (2018) Efeito imunomodulador na radioterapia. Rev Min Radiot. http://www.radioterapiamineira.org. Accessed 27 July 2018
  16. 16.
    Falcão PL, Cuperschmid EM, Trindade BM, Campos TPR (2014) Transforming growth factor-b and matrix metalloproteinase secretion in cell culture from ex vivo PBMC after exposure to UV radiation. J Biol Regul Homeost Agents 28(2):333–340PubMedGoogle Scholar
  17. 17.
    Menard C, Lowenthal JDM, Muanza T, Sproull M, Ross S, Gulley J, Petricoin E, Coleman NC, Whiteley G, Liotta L, Camphausen K (2006) Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis. Cancer Res 66(3):1CrossRefGoogle Scholar
  18. 18.
    Chaze T, Hornez L, Chambon C, Haddad I, Vinh J, Peyrat JP, Benderitter M, Guipaud O (2013) Serum proteome analysis for profiling predictive protein markers associated with the severity of skin lesions induced by ionizing radiation. Proteomes 1(2):40–69CrossRefGoogle Scholar
  19. 19.
    Lima CV, Campos TPR (2017) Radiation-induced changes in the electrophoretic profile of serum albumin. Braz Arch Biol Technol.  https://doi.org/10.1590/1678-4324-2016160246 CrossRefGoogle Scholar
  20. 20.
    Shirieve DC, Loeffler JS (2011) Human radiation injury. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  21. 21.
    Lima CV, Campos TPR (2016) Bras Patol Med Lab 52(3):171–177Google Scholar
  22. 22.
    Guipaud O, Holler V, Buard V (2007) Time-course analysis of mouse serum proteome changes following exposure of the skin to ionizing radiation. Proteomics 7:3992–4002CrossRefGoogle Scholar
  23. 23.
    Zavadniak AF, Rosário NA (2005) Regulação da síntese de IgE. Ver Brás Alerg Imunopatol 8(2):65–72Google Scholar
  24. 24.
    Calazans SG, Daleck Fagliari JJ, Repetti CF, De Nardi AB, Castro JHT, Fernandes SC, César SC, Rodigheri SM (2009) Proteinograma sérico de cães sadios e com linfoma obtido por eletroforese em gel de poliacrilamida (SDS-PAGE). Arq Bras Med Vet Zootec 61(5):1044–1048CrossRefGoogle Scholar
  25. 25.
    Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Celso Vieira Lima
    • 1
  • Tarcísio Passos Ribeiro de Campos
    • 1
  • Carlos Julio Montano Valencia
    • 1
  • Iassudara Garcia Almeida
    • 1
  1. 1.Programa de Ciências e Tecnicas Nucleares, Nuclear Engineering DepartmentUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations